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Abstract
Large Language Models (LLMs) are transforming the land-
scape of mobile intelligence. Federated Learning (FL), a
method to preserve user data privacy, is often employed in
fine-tuning LLMs to downstream mobile tasks, i.e., FedLLM.
A vital challenge of FedLLM is the tension between LLM
complexity and resource constraint of mobile devices.

In response to this challenge, this work introduces FwdLLM,
an innovative FL protocol designed to enhance the FedLLM
efficiency. The key idea of FwdLLM is to employ backpropa-
gation (BP)-free training methods, requiring devices only to
execute “perturbed inferences”. Consequently, FwdLLM deliv-
ers way better memory efficiency and time efficiency (expe-
dited by mobile NPUs and an expanded array of participant
devices). FwdLLM centers around three key designs: (1) it com-
bines BP-free training with parameter-efficient training meth-
ods, an essential way to scale the approach to the LLM era;
(2) it systematically and adaptively allocates computational
loads across devices, striking a careful balance between con-
vergence speed and accuracy; (3) it discriminatively samples
perturbed predictions that are more valuable to model conver-
gence. Comprehensive experiments illustrate FwdLLM’s sig-
nificant advantages over conventional methods, including up
to three orders of magnitude faster convergence and a 14.6→
reduction in memory footprint. Uniquely, FwdLLM paves the
way for federated billion-parameter LLMs such as LLaMA
on COTS mobile devices – a feat previously unattained.

1 Introduction

Large Language Models (LLMs) such as GPTs and LLaMA
have showcased an impressive ability to handle generic ma-
chine learning tasks. As foundational models, pre-trained
LLMs can be fine-tuned for various downstream tasks and
have been applied across a broad range of mobile applica-
tions, including but not limited to question answering, per-
sonal assistance, and data retrieval [38,80,97,100,103]. Early
efforts have been invested to adapt LLMs to mobile devices

while maintaining data privacy during the fine-tuning process.
Often, these efforts employ federated learning, an approach
known as FedLLM [17, 17, 18, 82, 88, 108, 110].

A salient feature of LLMs is their scalability: by incorporat-
ing more parameters, LLMs can continually evolve, achieving
higher accuracy or even emergent abilities [29, 32, 101, 106].
Consequently, contemporary LLMs have grown enormously
in size and are hard to be trained even on a GPU clus-
ter [83, 98], not to mention mobile devices. Recent research
of FedLLM [18, 82, 108, 110] primarily addresses the net-
work issue between devices and cloud aggregator, yet the
convergence is still lengthy and being impractical for develop-
ers. Through pilot experiments (§2.2), we identify three key
obstacles towards practical FedLLM.

• Huge memory footprint. The predominant on-device
training algorithm [19, 89] necessitates extensive memory to
store intermediate results such as activations and gradients.
Although fine-tuning could omit most gradients with layers
frozen, activations continue to demand considerable memory,
often exceeding device capabilities. For example, 3.9 GB is
required for RoBERTa-large. It results in extra I/O time to
swap in/out data [45, 69] and makes the training task a highly
likely victim of mobile OS’s low memory killer [9]; in either
way, the FedLLM convergence is significantly slowed down.

• Incompatible with mobile accelerators. Mobile SoCs
are often furnished with powerful, fast-evolving DNN ac-
celerators (NPUs), e.g., Google Edge TPU and Qualcomm
Hexagon that are up to 30→ faster than CPUs. Regrettably,
on-device training is unsupported on nearly all mobile NPUs,
since they are tailored for inference rather than training, and
thus lack the requisite support for training-specific operations
like SELECT_OPS [1] and dynamic gradient updating.

• Limited device scalability. In FL, only dozens of devices
participate in training simtaneously, even when millions of
IoT/smartphone devices are available. For instance, Google’s
deployed FL system samples merely around 1% of training-
ready devices per round [8], because even a small number
of devices can saturate learning performance, meaning addi-
tional devices do not further expedite convergence.
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Background: Federated LLM (FedLLM)

(1) Democratizing LLMs (2) Stronger LLMs
[Reference: FlowerLLM, Flower Ltd.]
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• Huge memory footprint
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• Huge memory footprint
• Incompatible with mobile 
accelerators
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• Huge memory footprint
• Incompatible with mobile 
accelerators
• Limited device scalability
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Root: Backpropagation (BP)

They can all be attributed to BP-based 
gradient computing.

Alternatives: BP-free Training
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Backpropagation-Free Training
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Design: Forward Gradient

• Forward gradient: unbiased estimation of BP-based gradient

True (BP-based) gradients
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Baydin A G, Pearlmutter B A, Syme D, et al. 
Gradients without backpropagation
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Design: System Overview
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• Previous BP-Free Literatures only apply to tiny models.

Design #1: Parameter-efficient BP-Free
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• Previous BP-Free Literatures only apply to tiny models.
• Reason: Number of perturbations are huge.

Design #1: Parameter-efficient BP-Free
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• Previous BP-Free Literatures only apply to tiny models.
• Reason: Number of perturbations are huge.

Number of perturbations 

Model size

Hessian rank of Loss

Design #1: Parameter-efficient BP-Free
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Design #1: Parameter-efficient BP-Free
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Design #2: Client Workloads Adaptation

• How many perturbations？
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Design #2: Client Workloads Adaptation

• How many perturbations？
• We decide on the gradient variance.

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL

Validate?

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL
More 

perturbation

no

14/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design #3: Discriminative sampler

• Over 60% of computed 
forward gradients contribute 
to less than 30% final 
aggregated gradient.

Contribute more
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Design #3: Discriminative sampler

• Over 60% of computed 
forward gradients contribute 
to less than 30% final 
aggregated gradient.
• We propose to filter out those 
more valuable perturbations.

Contribute more

Forward gradient (n-1)
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Design: Holistic Workflow
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Evaluation: Setup

• Dataset:
• Discriminative (YAHOO, AGNEWS, YELP-P)
• Generative (SQUAD) 

• Baselines:
• Vanilla Backpropagation-based Federated LLM Fine-tuning (Full-FT)
• Parameter-efficient FedLLM Fine-tuning (Adapter, BitFit, LoRA)
• Optimized Parameter-efficient FedLLM Fine-tuning (FedAdapter)

• Model:
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Evaluation: End-to-end Performance

FwdLLM achieves significant improvements with mobile NPU. (up to 132x)

FwdLLM is versatile across different processors and hardware boards. (GPU: 92x; CPU: 21x)
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Evaluation: Different Client Number

• 50 clients are enough to 
surpass BP-based methods.
• More clients increase the 
convergence speed continuously.
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Evaluation: System Cost

• Up to 93% memory reduction
• Higher energy cost than PEFT

(100 times more client involved)
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Evaluation: Extended to LLaMA

• First implemented billion-
sized FedLLM fine-tuning on 
mobile phones (CPU).
• Similar performance to BP-
based baselines.
•（Vision）with NPU, FwdLLM
converges with the same 
speed as central training.
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Conclusion
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• Beyond LLaMA-7B
• More Models?
• Mobile Applications?
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Thanks for your listening!

Contact: Dongqi Cai (cdq@bupt.edu.cn)
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Large Language Models (LLMs) are transforming the land-
scape of mobile intelligence. Federated Learning (FL), a
method to preserve user data privacy, is often employed in
fine-tuning LLMs to downstream mobile tasks, i.e., FedLLM.
A vital challenge of FedLLM is the tension between LLM
complexity and resource constraint of mobile devices.

In response to this challenge, this work introduces FwdLLM,
an innovative FL protocol designed to enhance the FedLLM
efficiency. The key idea of FwdLLM is to employ backpropa-
gation (BP)-free training methods, requiring devices only to
execute “perturbed inferences”. Consequently, FwdLLM deliv-
ers way better memory efficiency and time efficiency (expe-
dited by mobile NPUs and an expanded array of participant
devices). FwdLLM centers around three key designs: (1) it com-
bines BP-free training with parameter-efficient training meth-
ods, an essential way to scale the approach to the LLM era;
(2) it systematically and adaptively allocates computational
loads across devices, striking a careful balance between con-
vergence speed and accuracy; (3) it discriminatively samples
perturbed predictions that are more valuable to model conver-
gence. Comprehensive experiments illustrate FwdLLM’s sig-
nificant advantages over conventional methods, including up
to three orders of magnitude faster convergence and a 14.6→
reduction in memory footprint. Uniquely, FwdLLM paves the
way for federated billion-parameter LLMs such as LLaMA
on COTS mobile devices – a feat previously unattained.

1 Introduction

Large Language Models (LLMs) such as GPTs and LLaMA
have showcased an impressive ability to handle generic ma-
chine learning tasks. As foundational models, pre-trained
LLMs can be fine-tuned for various downstream tasks and
have been applied across a broad range of mobile applica-
tions, including but not limited to question answering, per-
sonal assistance, and data retrieval [38,80,97,100,103]. Early
efforts have been invested to adapt LLMs to mobile devices

while maintaining data privacy during the fine-tuning process.
Often, these efforts employ federated learning, an approach
known as FedLLM [17, 17, 18, 82, 88, 108, 110].

A salient feature of LLMs is their scalability: by incorporat-
ing more parameters, LLMs can continually evolve, achieving
higher accuracy or even emergent abilities [29, 32, 101, 106].
Consequently, contemporary LLMs have grown enormously
in size and are hard to be trained even on a GPU clus-
ter [83, 98], not to mention mobile devices. Recent research
of FedLLM [18, 82, 108, 110] primarily addresses the net-
work issue between devices and cloud aggregator, yet the
convergence is still lengthy and being impractical for develop-
ers. Through pilot experiments (§2.2), we identify three key
obstacles towards practical FedLLM.

• Huge memory footprint. The predominant on-device
training algorithm [19, 89] necessitates extensive memory to
store intermediate results such as activations and gradients.
Although fine-tuning could omit most gradients with layers
frozen, activations continue to demand considerable memory,
often exceeding device capabilities. For example, 3.9 GB is
required for RoBERTa-large. It results in extra I/O time to
swap in/out data [45, 69] and makes the training task a highly
likely victim of mobile OS’s low memory killer [9]; in either
way, the FedLLM convergence is significantly slowed down.

• Incompatible with mobile accelerators. Mobile SoCs
are often furnished with powerful, fast-evolving DNN ac-
celerators (NPUs), e.g., Google Edge TPU and Qualcomm
Hexagon that are up to 30→ faster than CPUs. Regrettably,
on-device training is unsupported on nearly all mobile NPUs,
since they are tailored for inference rather than training, and
thus lack the requisite support for training-specific operations
like SELECT_OPS [1] and dynamic gradient updating.

• Limited device scalability. In FL, only dozens of devices
participate in training simtaneously, even when millions of
IoT/smartphone devices are available. For instance, Google’s
deployed FL system samples merely around 1% of training-
ready devices per round [8], because even a small number
of devices can saturate learning performance, meaning addi-
tional devices do not further expedite convergence.

mllm mllm-NPU


