2024 USENIX Annual Technical Conference

FwdLLM: Efficient Federated Finetuning of Large Language Models with Perturbed Inferences

Mengwei Xu, **Dongqi Cai***, Yaozong Wu, Xiang Li, and Shangguang Wang Beijing University of Posts and Telecommunications (BUPT)

July. 11th, 2024

Background: Federated LLM (FedLLM)

Dongqi Cai, BUPT

FwdLLM@USENIX ATC '24

[Reference: FlowerLLM, Flower Ltd.] 1/24

Motivation: FedLLM unique challenge

• Huge **memory** footprint

Motivation: FedLLM unique challenge

- Huge **memory** footprint
- Incompatible with mobile accelerators

Motivation: FedLLM unique challenge

- Huge **memory** footprint
- Incompatible with mobile accelerators
- Limited device scalability

Root: Backpropagation (BP)

They can all be attributed to BP-based gradient computing.

Algorithms	Trainable	Memory Footprint (GB)						
Algonums	Parameters	Weights	Activations	Gradients	Total			
FT-full	354.3M (100%)	1.3	5.1	1.3	7.7			
FT-adapter	3.2M (9.0%)	1.3	3.9	0.02	5.2			
FT-bitfit	0.3M (0.8%)	1.3	3.8	0.009	5.1			
FT-lora	0.8M (2.2%)	1.3	3.8	0.01	5.1			
Inference	/	1.3	0.2	0	1.5			

Alternatives: BP-free Training

Backpropagation-Free Training

Dongqi Cai, BUPT

Design: Forward Gradient

• Forward gradient: unbiased estimation of BP-based gradient

Design: System Overview

Dongqi Cai, BUPT

(a) Effect of model size.

• Previous BP-Free Literatures only apply to tiny models.

- Previous BP-Free Literatures only apply to tiny models.
- Reason: Number of perturbations are huge.

- Previous BP-Free Literatures only apply to tiny models.
- Reason: Number of perturbations are huge.

- Previous BP-Free Literatures only apply to tiny models.
- Reason: Number of perturbations are huge.

Design #2: Client Workloads Adaptation

Figure 7: Optimal Global-PS varies across training.

• How many perturbations?

Design #2: Client Workloads Adaptation

perturbation

• How many perturbations?

Dongqi Cai, BUPT

• We decide on the gradient variance.

Design #3: Discriminative sampler

 Over 60% of computed forward gradients contribute to less than 30% final aggregated gradient.

Design #3: Discriminative sampler

- Over 60% of computed forward gradients contribute to less than 30% final aggregated gradient.
- We propose to filter out those more valuable perturbations.

Design: Holistic Workflow

Evaluation: Setup

• Model:

Models Arch.		Params.	PEFT	Infer. Libs
ALBERT-base [46]	Encoder-only	12M	BitFit	TFLite [5]
DistilBERT-base [77]	Encoder-only	66M	Adapter	TFLite [5]
BERT-base [27]	Encoder-only	1 10M	Bitfit	TFLite [5]
RoBERTa-large [63]	Encoder-only	340M	Bitfit	TFLite [5]
LLaMA [85]	Decoder-only	7B	LoRA	llama.cpp [6]

• Dataset:

- Discriminative (YAHOO, AGNEWS, YELP-P)
- Generative (SQUAD)

• Baselines:

- Vanilla Backpropagation-based Federated LLM Fine-tuning (Full-FT)
- Parameter-efficient FedLLM Fine-tuning (Adapter, BitFit, LoRA)
- Optimized Parameter-efficient FedLLM Fine-tuning (FedAdapter)

Evaluation: End-to-end Performance

FwdLLM achieves **significant** improvements with mobile **NPU**. (up to 132x)

Convergence	ALBERT-base			DistilBERT-base			BERT-base			RoBERTa-large		
Time (mins)	AGNEWS	YAHOO	YELP-P	AGNEWS	YAHOO	YELP-P	AGNEWS	YAHOO	YELP-P	AGNEWS	YAHOO	YELP-P
Full-FT	4598.3	1076.0	5871.3	721.0	651.4	892.7	1535.2	1090.9	2217.4	3833.6	Err	Err
Adapter	168.3	509.9	948.3	84.7	115.3	119.6	250.1	311.8	370.8	860.0	132.7	1319.3
Adapter (FedAvg)	1325.6	2147.9	1119.6	136.9	485.7	141.2	5 95.2	1718.6	704.6	298.1	1067.0	410.4
Bitfit	174.8	350.5	367.0	76.4	134.8	116.7	272.8	366.3	307.2	58.9	131.4	196.3
FedAdapter	187.8	303.1	293.2	29.5	59.9	52.5	89.5	176.2	212.7	27.0	45.9	123.1
Ours (CPU)	227.1	315.9	271.6	61.5	110.5	92.2	200.7	462.7	242.8	194.3	277.3	95.3
Ours (GPU)	53.2	73.0	63.5	28.1	32.5	42.0	31.1	57.5	37.5	49.1	60.4	24.1
Ours (NPU)	22.7	30.4	27.0	21.9	18.1	32.7	27.6	49.0	33.2	28.9	30.1	14.1

FwdLLM is versatile across different processors and hardware boards. (GPU: 92x; CPU: 21x)

Evaluation: Different Client Number

- **50 clients** are enough to surpass BP-based methods.
- More clients increase the convergence speed continuously.

Evaluation: System Cost

- Up to 93% memory reduction
- Higher energy cost than PEFT

(100 times more client involved)

Evaluation: Extended to LLaMA

Instruction input:

Context:

Bethencourt took the title of King of the Canary Islands, as vassal to Henry III of Castile. In 1418, Jean's nephew Maciot de Bethencourt sold the rights to the islands to Enrique Pérez de Guzmán, 2nd Count de Niebla.

Question: Who sold the rights?

Answer:

Llama-7B-original: Jean de Bethencourt sold the rights to the islands to Enrique Pérez de Guzmán, 2nd Count de Niebla. Llama-7B-tuned(backward): Maciot de Bethencourt Llama-7B-tuned(forward): Jean's nephew Maciot de Bethencourt

Ground Ture: Maciot de Bethencourt

Methods	Mem.	Centr	ralized Tr	aining (A100)	Federated Learning			
Methous	(GB)	Acc.	Round	Time	Acc.	Round	Time	
BP, FP16	39.2	89.7	500	0.1 hrs				
BP, INT8	32.4	88.6	500	0.06 hrs	N/A due to memory			
BP, INT4	28.5	87.8	500	0.04 hrs	inefficiency on			
Ours, FP16	15.6	87.0	240	1.5 hrs	Pixel 7 Pro (8GB)			
Ours, INT8	7.9	86.9	260	0.8 hrs				
Ours (CPU), INT4	4.0	85.8	120	0.25 hrs	85.8	130	0.19 hrs	
Ours (NPU [*]), INT4	4.0	03.0	150	0.25 1118	03.0	150	0.07 hrs	

- First implemented billionsized FedLLM fine-tuning on mobile phones (CPU).
- Similar performance to BPbased baselines.
- (Vision) with NPU, FwdLLM converges with the same speed as central training.

Conclusion

Thanks for your listening!

Contact: Dongqi Cai (cdq@bupt.edu.cn)

Dongqi Cai, BUPT