
2024 USENIX Annual Technical Conference

FwdLLM: Efficient Federated Finetuning of 
Large Language Models with Perturbed Inferences

Mengwei Xu, Dongqi Cai*, Yaozong Wu, Xiang Li, and Shangguang Wang
Beijing University of Posts and Telecommunications (BUPT)

July. 11th, 2024

FwdLLM: Efficient Federated Finetuning of Large Language Models
with Perturbed Inferences

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang

Beijing University of Posts and Telecommunications (BUPT)

Abstract
Large Language Models (LLMs) are transforming the land-
scape of mobile intelligence. Federated Learning (FL), a
method to preserve user data privacy, is often employed in
fine-tuning LLMs to downstream mobile tasks, i.e., FedLLM.
A vital challenge of FedLLM is the tension between LLM
complexity and resource constraint of mobile devices.

In response to this challenge, this work introduces FwdLLM,
an innovative FL protocol designed to enhance the FedLLM
efficiency. The key idea of FwdLLM is to employ backpropa-
gation (BP)-free training methods, requiring devices only to
execute “perturbed inferences”. Consequently, FwdLLM deliv-
ers way better memory efficiency and time efficiency (expe-
dited by mobile NPUs and an expanded array of participant
devices). FwdLLM centers around three key designs: (1) it com-
bines BP-free training with parameter-efficient training meth-
ods, an essential way to scale the approach to the LLM era;
(2) it systematically and adaptively allocates computational
loads across devices, striking a careful balance between con-
vergence speed and accuracy; (3) it discriminatively samples
perturbed predictions that are more valuable to model conver-
gence. Comprehensive experiments illustrate FwdLLM’s sig-
nificant advantages over conventional methods, including up
to three orders of magnitude faster convergence and a 14.6→
reduction in memory footprint. Uniquely, FwdLLM paves the
way for federated billion-parameter LLMs such as LLaMA
on COTS mobile devices – a feat previously unattained.

1 Introduction

Large Language Models (LLMs) such as GPTs and LLaMA
have showcased an impressive ability to handle generic ma-
chine learning tasks. As foundational models, pre-trained
LLMs can be fine-tuned for various downstream tasks and
have been applied across a broad range of mobile applica-
tions, including but not limited to question answering, per-
sonal assistance, and data retrieval [38,80,97,100,103]. Early
efforts have been invested to adapt LLMs to mobile devices

while maintaining data privacy during the fine-tuning process.
Often, these efforts employ federated learning, an approach
known as FedLLM [17, 17, 18, 82, 88, 108, 110].

A salient feature of LLMs is their scalability: by incorporat-
ing more parameters, LLMs can continually evolve, achieving
higher accuracy or even emergent abilities [29, 32, 101, 106].
Consequently, contemporary LLMs have grown enormously
in size and are hard to be trained even on a GPU clus-
ter [83, 98], not to mention mobile devices. Recent research
of FedLLM [18, 82, 108, 110] primarily addresses the net-
work issue between devices and cloud aggregator, yet the
convergence is still lengthy and being impractical for develop-
ers. Through pilot experiments (§2.2), we identify three key
obstacles towards practical FedLLM.

• Huge memory footprint. The predominant on-device
training algorithm [19, 89] necessitates extensive memory to
store intermediate results such as activations and gradients.
Although fine-tuning could omit most gradients with layers
frozen, activations continue to demand considerable memory,
often exceeding device capabilities. For example, 3.9 GB is
required for RoBERTa-large. It results in extra I/O time to
swap in/out data [45, 69] and makes the training task a highly
likely victim of mobile OS’s low memory killer [9]; in either
way, the FedLLM convergence is significantly slowed down.

• Incompatible with mobile accelerators. Mobile SoCs
are often furnished with powerful, fast-evolving DNN ac-
celerators (NPUs), e.g., Google Edge TPU and Qualcomm
Hexagon that are up to 30→ faster than CPUs. Regrettably,
on-device training is unsupported on nearly all mobile NPUs,
since they are tailored for inference rather than training, and
thus lack the requisite support for training-specific operations
like SELECT_OPS [1] and dynamic gradient updating.

• Limited device scalability. In FL, only dozens of devices
participate in training simtaneously, even when millions of
IoT/smartphone devices are available. For instance, Google’s
deployed FL system samples merely around 1% of training-
ready devices per round [8], because even a small number
of devices can saturate learning performance, meaning addi-
tional devices do not further expedite convergence.



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Background: Federated LLM (FedLLM)

(1) Democratizing LLMs (2) Stronger LLMs
[Reference: FlowerLLM, Flower Ltd.]

1/24



Motivation：FedLLM unique challenge

Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

• Huge memory footprint

2/24



Motivation：FedLLM unique challenge

Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

• Huge memory footprint
• Incompatible with mobile 
accelerators

3/24



Motivation：FedLLM unique challenge

Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

• Huge memory footprint
• Incompatible with mobile 
accelerators
• Limited device scalability

4/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Root: Backpropagation (BP)

They can all be attributed to BP-based 
gradient computing.

Alternatives: BP-free Training

5/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Backpropagation-Free Training

Estimation of the 

mean of a multivariate 

normal distribution. 

Charles, 1988
1. HSIC

2. BP-free algo.

3. …

Zero-order opt.

The Forward-Forward 

Algorithm: Some 

Preliminary Investigations

Hinton, 2022
1. Forward gradient

2. BBT (for LLM)

3. Preprint (for FL)

Concurrent work

6/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design: Forward Gradient

• Forward gradient: unbiased estimation of BP-based gradient

True (BP-based) gradients
∇𝑓(𝜽) = !"

!#!
, … , !"

!#"

$
.

Perturbations

Forward gradients

7/24

Baydin A G, Pearlmutter B A, Syme D, et al. 
Gradients without backpropagation



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design: System Overview

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL

8/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

• Previous BP-Free Literatures only apply to tiny models.

Design #1: Parameter-efficient BP-Free

9/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

• Previous BP-Free Literatures only apply to tiny models.
• Reason: Number of perturbations are huge.

Design #1: Parameter-efficient BP-Free

10/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

• Previous BP-Free Literatures only apply to tiny models.
• Reason: Number of perturbations are huge.

Number of perturbations 

Model size

Hessian rank of Loss

Design #1: Parameter-efficient BP-Free

11/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design #1: Parameter-efficient BP-Free

Model

PEFT
𝑓(𝜃)

𝑓(𝜃 + ℎ ' 𝑣)

𝑣
Gradient

In
pu

t

RAM

• Previous BP-Free Literatures only apply to tiny models.
• Reason: Number of perturbations are huge.

Model

PEFT

12/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design #2: Client Workloads Adaptation

• How many perturbations？

13/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design #2: Client Workloads Adaptation

• How many perturbations？
• We decide on the gradient variance.

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL

Validate?

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL
More 

perturbation

no

14/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design #3: Discriminative sampler

• Over 60% of computed 
forward gradients contribute 
to less than 30% final 
aggregated gradient.

Contribute more

15/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design #3: Discriminative sampler

• Over 60% of computed 
forward gradients contribute 
to less than 30% final 
aggregated gradient.
• We propose to filter out those 
more valuable perturbations.

Contribute more

Forward gradient (n-1)

16/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Design: Holistic Workflow

FwdLLM ClientsFwdLLM Server

Seeds&
Updated model

1 Discriminative
gradient sampling
2

Dataset

Inference
Engine3

Aggregate 6

Clients workloads
adaptation Model4

Validate?

Forward
gradients

5

17/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Evaluation: Setup

• Dataset:
• Discriminative (YAHOO, AGNEWS, YELP-P)
• Generative (SQUAD) 

• Baselines:
• Vanilla Backpropagation-based Federated LLM Fine-tuning (Full-FT)
• Parameter-efficient FedLLM Fine-tuning (Adapter, BitFit, LoRA)
• Optimized Parameter-efficient FedLLM Fine-tuning (FedAdapter)

• Model:

18/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Evaluation: End-to-end Performance

FwdLLM achieves significant improvements with mobile NPU. (up to 132x)

FwdLLM is versatile across different processors and hardware boards. (GPU: 92x; CPU: 21x)

19/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Evaluation: Different Client Number

• 50 clients are enough to 
surpass BP-based methods.
• More clients increase the 
convergence speed continuously.

20/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Evaluation: System Cost

• Up to 93% memory reduction
• Higher energy cost than PEFT

(100 times more client involved)

21/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Evaluation: Extended to LLaMA

• First implemented billion-
sized FedLLM fine-tuning on 
mobile phones (CPU).
• Similar performance to BP-
based baselines.
•（Vision）with NPU, FwdLLM
converges with the same 
speed as central training.

22/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Conclusion

! " #" # #! "… # #…

Contribute nothingTrue
gradients

Aggretate Validate&
Aggregate

weights Seed+weightsLoss

Guess forward gradients

Clients

Server

Working Idle Light-weight Working

Clients

Server

(a). Classic Backward-FL (b). Our Forward-FL
Forward-only High scalability First Fed LLaMA

• FedLLM
• FwdLLM: the First 
Forward-only FedLLM
• Memory Efficient
• NPU Friendly
• High Scalability

• Beyond LLaMA-7B
• More Models?
• Mobile Applications?

23/24



Dongqi Cai, BUPT FwdLLM@USENIX ATC '24

Thanks for your listening!

Contact: Dongqi Cai (cdq@bupt.edu.cn)

24/24

FwdLLM: Efficient Federated Finetuning of Large Language Models
with Perturbed Inferences

Mengwei Xu, Dongqi Cai, Yaozong Wu, Xiang Li, and Shangguang Wang

Beijing University of Posts and Telecommunications (BUPT)

Abstract
Large Language Models (LLMs) are transforming the land-
scape of mobile intelligence. Federated Learning (FL), a
method to preserve user data privacy, is often employed in
fine-tuning LLMs to downstream mobile tasks, i.e., FedLLM.
A vital challenge of FedLLM is the tension between LLM
complexity and resource constraint of mobile devices.

In response to this challenge, this work introduces FwdLLM,
an innovative FL protocol designed to enhance the FedLLM
efficiency. The key idea of FwdLLM is to employ backpropa-
gation (BP)-free training methods, requiring devices only to
execute “perturbed inferences”. Consequently, FwdLLM deliv-
ers way better memory efficiency and time efficiency (expe-
dited by mobile NPUs and an expanded array of participant
devices). FwdLLM centers around three key designs: (1) it com-
bines BP-free training with parameter-efficient training meth-
ods, an essential way to scale the approach to the LLM era;
(2) it systematically and adaptively allocates computational
loads across devices, striking a careful balance between con-
vergence speed and accuracy; (3) it discriminatively samples
perturbed predictions that are more valuable to model conver-
gence. Comprehensive experiments illustrate FwdLLM’s sig-
nificant advantages over conventional methods, including up
to three orders of magnitude faster convergence and a 14.6→
reduction in memory footprint. Uniquely, FwdLLM paves the
way for federated billion-parameter LLMs such as LLaMA
on COTS mobile devices – a feat previously unattained.

1 Introduction

Large Language Models (LLMs) such as GPTs and LLaMA
have showcased an impressive ability to handle generic ma-
chine learning tasks. As foundational models, pre-trained
LLMs can be fine-tuned for various downstream tasks and
have been applied across a broad range of mobile applica-
tions, including but not limited to question answering, per-
sonal assistance, and data retrieval [38,80,97,100,103]. Early
efforts have been invested to adapt LLMs to mobile devices

while maintaining data privacy during the fine-tuning process.
Often, these efforts employ federated learning, an approach
known as FedLLM [17, 17, 18, 82, 88, 108, 110].

A salient feature of LLMs is their scalability: by incorporat-
ing more parameters, LLMs can continually evolve, achieving
higher accuracy or even emergent abilities [29, 32, 101, 106].
Consequently, contemporary LLMs have grown enormously
in size and are hard to be trained even on a GPU clus-
ter [83, 98], not to mention mobile devices. Recent research
of FedLLM [18, 82, 108, 110] primarily addresses the net-
work issue between devices and cloud aggregator, yet the
convergence is still lengthy and being impractical for develop-
ers. Through pilot experiments (§2.2), we identify three key
obstacles towards practical FedLLM.

• Huge memory footprint. The predominant on-device
training algorithm [19, 89] necessitates extensive memory to
store intermediate results such as activations and gradients.
Although fine-tuning could omit most gradients with layers
frozen, activations continue to demand considerable memory,
often exceeding device capabilities. For example, 3.9 GB is
required for RoBERTa-large. It results in extra I/O time to
swap in/out data [45, 69] and makes the training task a highly
likely victim of mobile OS’s low memory killer [9]; in either
way, the FedLLM convergence is significantly slowed down.

• Incompatible with mobile accelerators. Mobile SoCs
are often furnished with powerful, fast-evolving DNN ac-
celerators (NPUs), e.g., Google Edge TPU and Qualcomm
Hexagon that are up to 30→ faster than CPUs. Regrettably,
on-device training is unsupported on nearly all mobile NPUs,
since they are tailored for inference rather than training, and
thus lack the requisite support for training-specific operations
like SELECT_OPS [1] and dynamic gradient updating.

• Limited device scalability. In FL, only dozens of devices
participate in training simtaneously, even when millions of
IoT/smartphone devices are available. For instance, Google’s
deployed FL system samples merely around 1% of training-
ready devices per round [8], because even a small number
of devices can saturate learning performance, meaning addi-
tional devices do not further expedite convergence.

mllm mllm-NPU


