
SILENCE: Protecting privacy in offloaded speech
understanding on wimpy devices

Abstract

Speech serves as a ubiquitous input interface for embedded mobile de-1

vices. Cloud-based solutions, while offering powerful speech understanding2

services, raise significant concerns regarding user privacy. To address this,3

disentanglement-based encoders have been proposed to remove sensitive infor-4

mation from speech signals without compromising the speech understanding func-5

tionality. However, these encoders demand high memory usage and computation6

complexity, making them impractical for resource-constrained wimpy devices.7

Our solution is based on a key observation that speech understanding hinges on8

long-term dependency knowledge of the entire utterance, in contrast to privacy-9

sensitive elements that are short-term dependent. Exploiting this observation, we10

propose SILENCE, a lightweight system that selectively obscuring short-term de-11

tails, without damaging the long-term dependent speech understanding perfor-12

mance. The crucial part of SILENCE is a differential mask generator derived from13

interpretable learning to automatically configure the masking process. We have14

implemented SILENCE on the STM32H7 microcontroller and evaluate its efficacy15

under different attacking scenarios. Our results demonstrate that SILENCE offers16

speech understanding performance and privacy protection capacity comparable to17

existing encoders, while achieving up to 53.3× speedup and 134.1× reduction in18

memory footprint.19

1 Introduction20

Privacy concern for cloud speech service The volume of speech data uploaded to the cloud for21

spoken language understanding (SLU) is steadily increasing [1, 12, 2], particularly in ubiquitous22

wimpy devices where textual input is inconvenient [41, 17, 3], e.g., home automation devices [32],23

smartwatches [37], telehealth sensors [22] and smart factory sensors [29] . However, exposing raw24

speech signal to the cloud raises privacy concerns [42]. It was revealed that contractors regularly25

listened to confidential details in Siri recordings to improve its accuracy [4]. This included private26

discussions, medical information, and even intimate moments.27
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Figure 1: Illustration of offloaded speech understanding on wimpy devices and its privacy protection.
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There are many aspects of potential privacy leakage in cloud-based SLU. Among them: biometric28

or contextual privacy leakage have been well studied and somewhat solved by removing information29

relevant to such tasks without compromising the SLU accuracy [18, 35]; transcript protection (espe-30

cially sensitive entities) is more challenging since it is deeply entangled with the SLU task itself. As31

shown in Figure 1, this paper focus on ensuring that cloud-based systems could efficiently classify32

the intent of SLU task (e.g., scheduling appointments or controlling home devices) while refraining33

from identifying the concrete entities (e.g., unintended names or passwords) in the spoken utterance,34

i.e., high word error rate (WER) of Automatic Speech Recognition (ASR) task. This is also a setting35

commonly used in speech privacy protection [44, 10, 16, 42, 15].36

Prior approaches A prevalent method for private speech processing is employing encoders1 based37

on disentanglement representation learning [44, 10, 28, 34], as illustrated in Figure 1(b). Those en-38

coders extract the speech representations using pre-trained acoustic models, e.g., wav2vec [40, 10],39

conformer [26, 34] and Preformer [20, 44]. Furthermore, they promote representation disentangle-40

ment through adversarial training [25]. For example, PPSLU [44] uses a 12-layer transformer-based41

Preformer as its encoder.42

As a result, disentanglement-based encoders still demand considerable computational resources,43

often exceeding tens of GFLOPs, to achieve effective disentanglement [11]. They are also memory-44

intensive, often comprising tens of millions of parameters. Consequently, they are unsuitable for45

embedded devices with limited memory. Moreover, it takes time-consuming adversarial training to46

disentangle the encoded representation for each specific SLU task. This aspect limits the flexibility47

and scalability for emerging SLU tasks. More motivating details will be presented in §2.2.48

In this paper, we aim to achieve the real-time, privacy-preserving offloading of speech understanding49

task on wimpy devices like STM32H7 microcontroller [5] with only 1MB RAM. This goal neces-50

sitates a novel encoder design that must be both lightweight and effective in filtering out sensitive51

information, as illustrated in Figure 1(c).52

Our solution We therefore present SILENCE, a SImpLe ENCodEr designed for efficient privacy-53

preserving SLU offloading. It is based on the asymmetric dependency observation: SLU intent54

extraction (e.g., scenario identification) typically requires only long-term dependency knowledge55

across the entire utterance, while ASR task (e.g., recognizing individual words or phrases) needs56

short-term dependency, as confirmed by our experiments in §3.1. Based on it, SILENCE strategically57

partitions the utterance into several segments, selectively masking out the majority to enhance pri-58

vacy by obscuring short-term details, without significantly damaging the long-term dependencies.59

The processed audio waveform is then transmitted to the cloud for SLU intent analysis. Addition-60

ally, we integrate a differential mask generator, inspired by interpretable learning methods [19], to61

optimize performance by automatically identifying how many and which segments to mask.62

Results We deploy SILENCE on the STM32H7 microcontroller [5] and assess its performance63

using the SLURP dataset [13] in both black-box and white-box attack environments. SILENCE64

achieves 81.2% intent classification accuracy on SLURP, surpassing previous privacy-preserving65

SLU systems by up to 8.3%. Regarding privacy protection, SILENCE offers comparable security66

to earlier systems, with a word error rate of up to 81.6% and an entity error rate of 90.7% under67

malicious ASR attacks. Even against white-box attacks, where attackers are strongly assumed to68

have the same encoder structure and weights as SILENCE, plus partial data from malicious clients,69

SILENCE maintains 67.3% word error rate and 64.3% entity error rate. Additionally, SILENCE70

proves to be resource-efficient and feasible for wimpy devices, using only 394.9KB of memory71

and taking just 912.0ms to encode a 4-second speech signal. Integrated with RPI-4B for a fair72

comparison, SILENCE uses up to 134.1× less memory and operates up to 53.3× faster than prior73

systems. The accuracy of SILENCE is only 7% lower than unprotected SLU systems.74

Contribution We have made the following contributions.75

• Based on the observation of asymmetric dependency between SLU and ASR tasks, we76

propose SILENCE, a simple yet effective encoder system for privacy-preserving SLU of-77

floading.78

1Note that these encoders are not specifically transformer encoders; rather, they can be implemented using
any NNs to encode speech signals.
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• We are the first to retrofit interpretable learning methods to automatically configure the79

masking process for a better balance between privacy and utility in speech understanding80

tasks.81

• We evaluate SILENCE on a wimpy microcontroller unit and demonstrate its effectiveness82

under various attack scenarios.83

2 Related Work and Background84

2.1 Privacy-preserving SLU85

Spoken Language Understanding (SLU) is a critical component of modern voice-activated systems,86

responsible for interpreting human speech and translating it into structured, actionable commands.87

For instance, when a user says, "Set a meeting for tomorrow at 10 AM," the SLU system might map88

this to a structured intent such as {scenario: Calendar, action: Create_entry}.89

Evolution of SLU Systems The evolution of SLU systems has seen a shift from traditional two-90

component systems, comprising ASR and Natural Language Understanding (NLU), to modern end-91

to-end neural networks [39, 27]. These advanced systems bypass the intermediate textual represen-92

tation and directly map speech signals to their semantic meaning, enhancing efficiency and reducing93

error propagation. A typical end-to-end SLU model features an encoder, often with convolution and94

attention-based elements, and a decoder, including a transformer decoder and a connectionist tem-95

poral classification decoder. Many SLU systems incorporate encoders from pre-trained ASR models96

like HuBERT [45], replacing the original ASR decoder with one tailored for SLU tasks.97

Threat Model Our threat model aligns with prior work [44, 10] where users (the victims) actively98

offloads their audio data to the cloud server (the adversary) for intended SLU tasks. Upon receiving99

the data, the adversary may employ automatic speech recognition to transcribe the audio and identify100

private entities [16, 42, 15]. Note that the transcriptions are often exceedingly detailed, containing101

much more information than the users intend to disclose. The goal of this paper is to ensure that102

the victims can reliably obtain the predefined SLU intent from the adversary, while preserving the103

adversary from discerning sensitive details or private entities in the transcript.104

For instance, home pods might capture recordings of confidential daily interactions alongside ex-105

plicit commands, presenting a paradigmatic case for SILENCE. Without SILENCE, over 80% of our106

private daily conversations could be automatically recognized and stored for unforeseen usage as107

will be analyzed in §5.1.108

2.2 Inefficiency of Existing Approaches109

Privacy-preserving methods Crypto-based approaches, such as HE [48] and MPC [24], have been110

proposed to provide encrypted computation. Unfortunately, they are technically slow and thus im-111

practical for deployment on wimpy audio devices due to the significant increase in computation112

and communication complexity. For example, MPC-based PUMA [21] takes 5 minutes to com-113

plete one token inference, which is far too slow for real-time. Voice conversion is another method114

to protect speech content. Prεεch [9] integrates voice conversion with GPT-based generated noise115

protect privacy, but it is far from feasible for deployment on wimpy devices. Traditional periph-116

eral devices, such as ultrasonic microphone jammers (UMJ), are designed to obscure raw speech by117

inserting non-linearity noise, thereby preventing illegal eavesdropping[23, 15]; however, they also118

corrupt speech semantics as well. A emerging and prevailing strategy is disentangling-based en-119

coders [10, 44, 28]; they aim to create a disentangled and hierarchical representation of the speech120

signal devoid of sensitive data. But we reveal their performance issue next.121

We conduct preliminary experiments to measure the resource consumption of the disentangling-122

based encoder of a pre-trained SLU model on a Raspberry Pi 4B (RPI-4B) [6] and Jetson TX2123

(TX2) [7]. Our key observation is that disentangling-based privacy-preserving SLU system is too124

resource-intensive for practical deployment. As illustrated in Figure 2, a disentanglement encoder125

consumes 648.7MB memory and 12.8s for complete one inference on RPI-4B. Even in the strong126

TX2 with GPU, the encoder still takes 593.0ms to complete one inference. Considering the network127

latency, the end-to-end latency of the disentangling-based SLU offloading system only saves 0.7%128
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Figure 2: Cost of disentangling-based encoders [44] for a 4-second audio inference.

wall-clock time compared to the OnDevice inference without offloading, with a similar memory129

footprint over 500M.130

Implications Disentangling-based encoders is slow and memory-intensive due to the complex en-131

coder structure designed to separate sensitive information from the speech signal. Given the limited132

resource of wimpy devices, it is not practical for common privacy-preserving SLU scenarios. To133

enable practical privacy-preserving SLU, the encoder structure and the inference process need to be134

simplified.135

3 SILENCE Design136

3.1 System Design and Rationales137

We introduce SILENCE to efficiently scrub raw audio for privacy-preserving SLU, as depicted in138

Figure 3. The key idea of SILENCE is simple and novel: it masks out a portion of audio segments139

before sending them to the cloud for SLU tasks. This design is based on an unique observation140

shown in Figure 4(c): when a portion of audio segments is masked out, the ASR model becomes141

incapable to recognize the phonemes in the masked frames, while the SLU model can still recognize142

the intent.

B

Transcript: set a meeting for tomorrow at 10 AM

Intent: {scenario: Calendar, action: Create_entry}User

SILENCE Mask 
generator

Transcript: set a meeting for tomorrow at 10 AM

Intent: {scenario: Calendar, action: Create_entry}

Cloud

Figure 3: SILENCE overview. Red hard line represents the long-term dependency, while the green
dotted line represents the short-term dependency.

143

Design rationale Why is SILENCE able to protect the sensitive entity privacy while maintaining144

SLU accuracy? This capability is rooted in the asymmetrical dependency between the ASR and145

SLU task.146

Speech is composed of many meta phonemes, and the generation of a single meta phoneme depends147

on its adjacent frame [42]. Dependency is defined as the length of frame that a model’s output148

depends on. Figure 4(a) shows each phoneme is mainly dependent on a few frames, indicating short-149

term dependency. This phenomenon is referred to as "peaky behavior" in the ASR literature [47]. In150

contrast, an SLU model utilizes an attention-based decoder [45] to capture the relationship between151

the entire utterance and the intent, implying that the intent is long-term dependent on the whole152

utterance.153

Formally, SILENCE is a simple encoder based on asymmetrical dependency-based masking. This154

simple masking encoder is defined as: x̂ = x ⊙ Z, where x is the input audio signal, ⊙ represents155

the element-wise multiplication, x̂ is the masked audio signal and Z is the binary masking vector156

with the same dimension as x. Z consists of k uniform portion, with all 0s or 1s in one portion157
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Figure 4: Foundation of SILENCE: asymmetrical dependency. (a). ASR task is short-term dependent
on the peaky phoneme probability. (b). SLU task is long-term dependent on knowledge from the
whole utterance. (c). Empirical results.

to mask-out or preserve the complete adjacent frames, respectively. This simple encoder forms158

the basis of SILENCE’s efficiency and privacy-preservation capacity, enabling secure offloading of159

speech understanding tasks on wimpy devices.160

The configuration challenges: Figure 4(c) demonstrates that the ratio of masked portion plays161

a crucial role in balancing the privacy (WER-ASR) and utility (ACC-SLU). Currently, SILENCE162

employs a trivial masking mechanism, necessitating clients to undertake a time-intensive hyper-163

parameter adjustment about the extent and location of masking. Incorrect masking configurations164

can result in significant loss of global long-term dependency, negatively affecting SLU accuracy,165

or insufficient masking of sensitive information, thus compromising privacy. Therefore, we face166

critical questions: how many and which portions should be masked?167

3.2 Online Configurator for SILENCE168

To address these challenges, we derive a differential mask generator from the interpretable learn-169

ing [19] as a online configurator for SILENCE. This automatically generate the masking vector Z.170

The mask generator is trained to identify how many and which portions to mask, optimizing the171

privacy-utility balance.172

Differentiable mask generator The configurator model aims to minimize the discrepancy between173

masked and original output by generating a mask Z. Formally, we define the number of unmasked174

portions as L0 loss:175

L0(ϕ, x) =

n∑
i=1

1[R̸=0] (Zi) (1)

where ϕ is the mask generator, 1(·) is the indicator function. We minimize L0 for dataset D, ensuring176

that predictions from masked inputs resemble those from the origin model:177

min
ϕ

∑
x∈D

L0(ϕ, x) (2)

s.t. D⋆[y∥ŷ] ≤ γ ∀x ∈ D (3)

where ŷ = f(x̂), y is the tokenized label, D⋆[y∥ŷ] is the KL divergence and the margin γ ∈ R>0 is178

a hyperparameter.179

Given that L0 is discontinuous and has zero derivative almost everywhere, and the mask generator ϕ180

requires a discontinuous output activation (like a step function) for binary masks, we utilize a sparse181

relaxation to binary variables [30, 14] instead of the binary mask during training.182

Holistic workflow As shown in Figure 5, SILENCE encompasses two phases:183

(1) Offline phase: (1a) First, SILENCE trains a differentiable mask generator. The client selects a184

mask generator model, potentially a submodule of a pre-trained ASR model, such as HuBERT’s185
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Figure 5: SILENCE workflow. (1) Offline phase: (1a) Training mask generator and (1b) adapting
cloud SLU model to it; (2) Online phase: Conducting could inference with the masked x. Only
masked input audio x and insensitive intent label y are exposed to the cloud.

CNN feature extractor. A small gate model is then integrated with this submodule. The combined186

model processes the input audio and generates a mask. This mask selectively conceals parts of the187

input, ensuring retention of only vital SLU information while hiding sensitive data. The masked188

input is then forwarded to either a trusted cloud service or a local SLU model for obtaining masked189

output. The mask generator is fine-tuned to minimize the discrepancy between the masked output190

logits and the original intent, as defined in Equation (1-3).191

(1b) Second, SILENCE adapts the cloud model . Here, the client forwards the masked input and a192

specific SLU intent (e.g., "set alarm") to the cloud-based SLU model. The model undergoes fine-193

tuning to adapt to the masked inputs. This process includes adjusting the model parameters for194

accurate recognition and response to SLU commands based on the masked input.195

(2) Online phase: In online speech understanding, the client sends the masked input to the cloud196

SLU model. Using the adapted model, the cloud-based SLU accurately identifies and executes the197

intended SLU action or response.198

Configurator cost analysis Training the differentiable mask generator is affordable for the client.199

Our experiments indicate that convergence is achieved with approximately 200 audio samples,200

equivalent to 600 seconds of audio. This process takes up to 30 seconds on an A40 GPU. Adapting201

the SLU model to each mask generator is a one-pass effort. This adaptation is relatively trivial, espe-202

cially when starting from a fine-tuned SLU model rather than building from scratch. This aspect of203

the process incurs minimal cost compared to the training of the cloud SLU model. Moreover, these204

costs can be amortized over a large number of edge users in the long run, making it an economically205

viable solution.206

Remark Note that the mask generator is not developed for tagging sequences at a semantic level.207

Rather, its design focuses on identifying segments that are more relevant to the SLU task. This task is208

essentially a relatively straightforward binary classification problem, which is proven to be effective209

in prior interpretable learning literature [19, 14] and light-weight enough for real-time inference.210

4 Implementation and Methodology211

We have fully implemented the SILENCE prototype atop SpeechBrain [38], a PyTorch-based and212

unified speech toolkit. As prior work [45], we use SpeechBrain to train the differential mask gener-213

ator and simulate the cloud training process. After that, we deploy the trained mask generator into214

the embedded devices and evaluate the end-to-end performance.215

Hardware and environment Offline training is simulated on a server with 8 NVIDIA A40 GPUs.216

The trained mask generator is deployed into the STM32H7 [5] or Raspberry PI 4 (RPI-4B) [6].217

STM32H7 is a wimpy microcontroller with 1MB RAM. RPI-4B is a popular development board218

with 4GB RAM. We embed the approaches not feasible to fit in the STM32H7 into the RPI-4B.219

Models We design four types of mask generator structures: (1) Random: a random binary vector220

generator with 50% portion masked; (2) SILENCE-S: a learnable mask generator with only one MLP221
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gate; (3) SILENCE-M: a learnable mask generator with one HuBERT encoder layer and the gate; (4)222

SILENCE-L: a learnable mask generator with three HuBERT encoder layers and the gate. As for the223

cloud SLU model, we simulate it using the SoTA end-to-end SLU model [45]. It replaces the ASR224

decoder of pre-trained HuBERT with SLU attentional decoder.225

Dataset and Metrics We run our experiments on SLURP [13] with 102 hours of speech. SLURP’s226

utterances are complex and closer to daily human speech. We select scenario classification accu-227

racy to measure the SLU understanding performance (ACC-SLU). Following prior work [44], we228

choose large-scale English reading corpus LibriSpeech [33] for a multi-task protection scenario.229

In the multi-task protection scenario, not only the SLU command utterance (SLURP) but also the230

background or the subsequent utterance (LibriSpeech) are uploaded to the cloud. WER is used to231

measure the attack performance. More specifically, we utilize WER-SLU to measure the attacker’s232

capacity to recognize the word information in the uploaded SLU audio itself, and WER-ASR as233

the WER of recognized accompanying audio, i.e., LibriSpeech dataset. We also report the private234

entity recognition error rate (EER) to ensure that the cloud model is not able to recognize the private235

information in the speech signal. As for latency, we sequentially fed test audios into the local model236

without any window processing2 and recorded the average forward time as the local execution time.237

Baselines We compare SILENCE to the following alternatives: (1) OnDevice means the cloud SLU238

model is downloaded and run locally on the client device. (2) AllOffload means the raw audio239

is uploaded to the cloud for SLU inference. (3) VAE [10] is the vanilla variational auto-encoder240

method that uses adversarial training to disentangle the private information from speech signal. (4)241

PPSLU [44] is the state-of-the-art disentangling-based SLU privacy-preserving system, which uses242

12 transformer layers to separate the SLU information into a part of the hidden layer and only sends243

those hidden layers to the cloud for SLU inference.244

Attack scenarios. We use three attacks encompassing both black-box and white-box attacks:245

(1) Azure represents a black-box attacker scenario, in which the masked audio is transmitted to246

Azure [31] for automatic speech recognition. (2) Whisper simulates a SoTA cloud-based ASR247

model. This black-box attacker uses the pre-trained Whisper.medium.en model [36], directly248

downloaded from HuggingFace [46]. (3) Whisper(White-box) constitutes a white-box attack.249

Here, we hypothesize that certain users are malicious and disclose the mask generator’s structure250

and weights, along with their own audio data, to the Whisper attack model. Whisper(White-box)251

then utilizes this collected data from malicious users to adapt the pre-trained Whisper.medium.en252

model to the specific masking pattern.253

Hyper-parameters During the offline phase in Figure 5, we use the Adam optimizer with a learning254

rate of 1e-5 and a batch size of 4. For the inference step, we use the batch size of 1 to simulate the255

real streaming audio input scenario. The end-to-end cloud SLU latency is measured by invoking256

Azure APIs following previous work [43]. KL threshold λ is set as 0.15 for all mask generators.257

Attack model is set as Whisper without special declaration.258

5 Evaluation259

5.1 End-to-end performance260

SILENCE achieves comparable accuracy performance and privacy protection capacity to pre-261

vious encoders. As shown in Figure 6, we compare the accuracy of SILENCE with all baselines.262

OnDevice offloads no signals to the cloud and thus has the best privacy protection (WER=100).263

It is observed that SILENCE could achieve up to 81.1% accuracy, with less than 7% accuracy loss264

compared to unprotected AllOffload and local OnDevice SLU model. Its rationale is that we265

mainly mask the short-dependent frames that does not significantly affect the SLU performance.266

We also compare the performance of SILENCE with the SoTA privacy-preserving SLU system, i.e.,267

PPSLU [44]. SILENCE achieves 7.2% higher accuracy than PPSLU which tries to apply complex non-268

linear transformation to the hidden layer to prevent malicious re-construction, but this might also269

damage part of the SLU information. In terms of privacy preservation, our learnable mask generator270

achieves up to 78.6% WER using SILENCE-L, indicating a privacy-preserving capacity on par with271

2The average duration of test SLU snippets is 2.8 seconds, with a maximum of 21.5 seconds, which is
shorter than the maximum input window of speech models (e.g., 30 seconds for Whisper [36]).

7



OnDevice

AllOffload

Ours-Learnable

Ours-Random

PPSLUVAE

Figure 6: Performance of different
privacy-preserving SLU approaches.

Figure 6: Performance of different privacy-preserving SLU
approaches. OnDevice offloads no signals to the cloud and
thus has the best privacy protection (WER=100).

Whisper.medium.en model to the specific masking pattern.
Hyper-parameters During the offline phase in Figure 5,

we use the Adam optimizer with a learning rate of 1e-5 and a
batch size of 4. For the inference step, we use the batch size
of 1 to simulate the real streaming audio input scenario. The
end-to-end cloud SLU latency is measured by invoking Azure
APIs following previous work [42]. KL threshold l is set as
0.15 for all mask generators. Attack model is set as Whisper
without special declaration.

5 Evaluation

In this section, we evaluate the performance of SILENCE under
different attack scenarios, and also assess the effect of varying
hyper-parameters on the privacy-utility trade-off. After that,
we discuss the system cost of SILENCE.

5.1 End-to-end performance

SILENCE achieves comparable accuracy performance
and privacy protection capacity to previous encoders. As
shown in Figure 6, we compare the accuracy of SILENCE with
all baselines. Is observed that SILENCE could achieve up to
80% accuracy, with less than 8% accuracy loss compared to
AllOffload and OnDevice SLU model. Its rationale is that
we mainly mask the short-dependent frames that does not
significantly affect the SLU performance. We also compare
the performance of SILENCE with the state-of-the-art privacy-
preserving SLU system, i.e., PPSLU [43]. SILENCE achieves
6% higher accuracy than PPSLU which tries to apply complex
non-linear transformation to the hidden layer to prevent ma-
licious re-construction, but this might also damage part of
the SLU information. In terms of privacy preservation, our
learnable mask generator achieves up to 75% WER using
SILENCE-L, indicating a privacy-preserving capacity on par
with PPSLU. That is, over 75% of the words in the masked
audio are not correctly recognized by the ASR model. Fur-
thermore, we complete the inference with much lower delays
and memory footprint as will be shown in Figure 8.

Plain Azure Whisper
Whisper

(White-box)
ASR-WER 12.3 71.6 68.1 64.4
SLU-WER 14.7 81.6 78.6 51.4

EER 30.1 90.7 73.2 58.1

Table 1: Performance under different attack models.

Figure 7: Effect of threshold with different mask generators.

SILENCE is resistant to different attack models. As il-
lustrated in Table 1, SILENCE increases the SLU-WER from
14.7% to 78.6% under the attack model Whisper. As for
the online attack model Azure, SILENCE increases the SLU-
WER from 14.7% to 81.6%. According to our returned ser-
vice details, we find that over 50% of the sent audios are
tagged as ”ResultReason.NoMatch”, which means audios
are recognized as null utterances by the Azure ASR model.
Fine-tuned Whisper is a white-box attack model, which
means the attacker has the same mask generator structure
and weights as the SILENCE. We still achieve more than 50%
SLU-WER under this attack model. This is because even
Fine-tuned Whisper is fine-tuned to fill some of the miss-
ing frames, it still could not recover the private missing frames
because ,masking the short-dependent frames have funda-
mentally destroy the raw audio signal. It is not possible to
re-construct the phoneme without knowing any speech infor-
mation. In the last row, we show the high entity error rate to
demonstrate that the private entity is not leaked.

SILENCE scales to better privacy-accuracy trade-off
with a larger mask generator. We explore the impact of
the threshold g of SILENCE under different mask generator
structures. As shown in Figure 7, the threshold g controls the
trade-off between the privacy and utility. When g is small, the
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PPSLU. Furthermore, we complete the inference with much lower delays and memory footprint as272

will be shown in Figure 9.273

SILENCE is resistant to different attack models. As illustrated in Figure 7, SILENCE increases the274

SLU-WER from 14.7% to 78.6% under the attack model Whisper. As for the online attack model275

Azure, SILENCE increases the SLU-WER from 14.7% to 81.6%. According to our returned service276

details, we find that over 50% of the sent audios are tagged as ”ResultReason.NoMatch”, which277

means audios are recognized as null utterances by the Azure ASR model. Whisper(White-box)278

is a white-box attack model, which means the attacker has the same mask generator structure and279

weights as the SILENCE. We still achieve more than 50% SLU-WER under this attack model. This280

is because even Whisper(White-box) is fine-tuned to fill some of the missing frames, it still could281

not recover the private missing frames. Because masking the short-dependent frames fundamentally282

destroys the raw audio signal. It is not possible to re-construct the phoneme without knowing any283

speech information. In the last subfigure, we show the high entity error rate to demonstrate that the284

private entity is not leaked.285

SILENCE scales to better privacy-accuracy trade-off with a larger mask generator. We explore286

the impact of the threshold γ of SILENCE under different mask generator structures. As shown in287

Figure 8, the threshold γ controls the trade-off between the privacy and utility. When γ is small,288

the mask generator is more conservative, leading to higher the utility a lower the masking portion.289

As we have discussed in Section 3, a lower rate of masking portions leads to higher possibility of290

privacy entity leakage. When γ is large, the mask generator is more aggressive, enhancing privacy.291

Another way to achieve more practical privacy-utility balance is using a more complex mask gener-292

ator structure, e.g., SILENCE-L. It achieves higher utility with the same privacy level compared to293

SILENCE-S, albeit with less efficiency, as shown in § 5.2.294

5.2 System cost295

SILENCE protects the private entities efficiently as shown in Figure 9. Different from prior encoders296

using complex disentanglement model, SILENCE only requires a light-weight mask generator to297

scrub the private information. The size of this generator varies according to different mask gener-298

ator structures. For the smallest mask generator, SILENCE-S, it only requires a 394.9KB memory299

footprint, and could successfully embed into the wimpy STM32H7 with 2MB RAM. SILENCE is300

efficient not only in terms of memory footprint but also in latency. SILENCE-S completes the local301

encoding with only 912.2ms on the wimpy STM32H7. For a fair comparison, we embed SILENCE-S302
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into RPI-4B and find that it is 18.1× faster and 134.1× less memory footprint than PPSLU. Even with303

the strong mask generator SILENCE-L, SILENCE achieves up to 7.5× lower encoding latency and304

consumes 1.9× less memory compared to OnDevice.305

6 Conclusion and Discussions306

SILENCE is an efficient and privacy-preserving end-to-end SLU system based on the asymmetrical307

dependency between ASR and SLU. SILENCE selectively mask the short-dependent sensitive words308

while retaining the long-dependent SLU intents. Together with the differentiable mask generator,309

SILENCE shows superior end-to-end inference speedup and privacy protection under different attack310

scenarios.311

Limitations: While for the first time, SILENCE provides a feasible privacy-preserving solution for312

wimpy audio devices, it introduces a huge design space for mask generator structures. The mask313

generator is akin to a lock; a genius lock design can protect privacy in the smallest of spaces, but a314

poor lock design can be bulky and easily broken. In this work, we simply inherit the SLU model315

structure and instantiate three sub-models from it to demonstrate better efficiency than previous316

encoders. Researchers can explore other structures for a better privacy-accuracy-efficiency trade-317

off. We will open-source all the code and checkpoints to facilitate further research in this direction.318

Some other potential limitations about lossy privacy-preserving capacity, the need for fine-tuning319

the cloud SLU model and the scope of defended threat model are thoroughly discussed below for320

further clarification.321

Is current privacy-preserving capacity enough? The quantitative WER 80% is considered secure322

enough, as previous encoders have strived to reach that level [44, 10]. And some SLU transcripts323

contain the intent word, so the successfully inferred word might be a non-private intent word. For324

instance, in one test audio transcript, “I want some jazz music to play”, the intent is ‘scenario’:325

‘play’, ‘action’: ‘music’. The interpretation of the malicious cloud ASR, “all subjects were used326

to play”, is acceptable since the predicted phrase “to play” contains no private information. This327

scenario is typical for most audios; we managed to preserve 90% of the private entities in Figure 6.328

This achievement matches the SoTA in privacy-preserving capacity, with up to 30× lower latency329

and 100× memory reduction.330

Why and how to fine-tune the cloud SLU Model? Initially, the cloud SLU is a generic pre-trained331

speech model lacking the capability to accurately understand personalized user intent. It is crucial332

to fine-tune the cloud SLU for better personalized intent understanding3. Secondly, while short-333

dependent masking does not eliminate intent information, it does impact specific details within the334

attention map, as depicted in Figure 4(b). Fine-tuning the cloud SLU model helps mitigate this335

impact and enhances the understanding of the user’s intent.336

Currently, cloud service providers have already offered APIs that allow users to fine-tune their per-337

sonalized cloud speech model. For example, Azure has introduced the Custom Speech service [8],338

which enables users to fine-tune the model for improved personalized outcomes. In this work, we339

simulate the tunable cloud model using the open-source model to perform more detailed analysis,340

such as different attacking scenarios341

Could private semantic detection attack be prevented? SILENCE does not initially target private342

semantic detection attacks. For example, eavesdropping on specific financial words and political343

framing are out-of-scope. However, we can offer defense capabilities against them as discussed344

below. The mask generator, controlled by the user, is trained to scrub utterances unrelated to the345

public intent. Private entities not predefined by the user are almost never included in the masked346

audio. Therefore, even if an attacker possesses a well-defined semantic and the mask generator,347

training the detection threat model is challenging because the synthetic masked audio lacks clear348

representations of the private semantic. Consequently, though not initially designed for this purpose,349

our mask generators successfully discourage the malicious cloud provider from detecting private350

semantics.351

3Note that a general speech model is sufficient for training the local mask generator in Figure 5 step (1a), as
the focus is not on generating precise intent but rather on obtaining a coarse-grained distribution of numerical
logits to facilitate mask generator training.
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NeurIPS Paper Checklist477

(1) Claims478

Question: Do the main claims made in the abstract and introduction accurately reflect the479

paper’s contributions and scope?480

Answer: [Yes]481

Justification: Our contribution is outlined as a seperated paragraph in §1.482

Guidelines:483

• The answer NA means that the abstract and introduction do not include the claims484

made in the paper.485

• The abstract and/or introduction should clearly state the claims made, including the486

contributions made in the paper and important assumptions and limitations. A No or487

NA answer to this question will not be perceived well by the reviewers.488

• The claims made should match theoretical and experimental results, and reflect how489

much the results can be expected to generalize to other settings.490

• It is fine to include aspirational goals as motivation as long as it is clear that these491

goals are not attained by the paper.492

(2) Limitations493

Question: Does the paper discuss the limitations of the work performed by the authors?494

Answer: [Yes]495

Justification: We thoroughly discuss the limitations of our work in §6.496

Guidelines:497

• The answer NA means that the paper has no limitation while the answer No means498

that the paper has limitations, but those are not discussed in the paper.499

• The authors are encouraged to create a separate "Limitations" section in their paper.500

• The paper should point out any strong assumptions and how robust the results are to501

violations of these assumptions (e.g., independence assumptions, noiseless settings,502

model well-specification, asymptotic approximations only holding locally). The au-503

thors should reflect on how these assumptions might be violated in practice and what504

the implications would be.505

• The authors should reflect on the scope of the claims made, e.g., if the approach was506

only tested on a few datasets or with a few runs. In general, empirical results often507

depend on implicit assumptions, which should be articulated.508

• The authors should reflect on the factors that influence the performance of the ap-509

proach. For example, a facial recognition algorithm may perform poorly when image510

resolution is low or images are taken in low lighting. Or a speech-to-text system might511

not be used reliably to provide closed captions for online lectures because it fails to512

handle technical jargon.513

• The authors should discuss the computational efficiency of the proposed algorithms514

and how they scale with dataset size.515

• If applicable, the authors should discuss possible limitations of their approach to ad-516

dress problems of privacy and fairness.517

• While the authors might fear that complete honesty about limitations might be used by518

reviewers as grounds for rejection, a worse outcome might be that reviewers discover519

limitations that aren’t acknowledged in the paper. The authors should use their best520

judgment and recognize that individual actions in favor of transparency play an impor-521

tant role in developing norms that preserve the integrity of the community. Reviewers522

will be specifically instructed to not penalize honesty concerning limitations.523

(3) Theory Assumptions and Proofs524

Question: For each theoretical result, does the paper provide the full set of assumptions and525

a complete (and correct) proof?526

Answer: [NA]527
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Justification: This paper does not include theoretical results.528

Guidelines:529

• The answer NA means that the paper does not include theoretical results.530

• All the theorems, formulas, and proofs in the paper should be numbered and cross-531

referenced.532

• All assumptions should be clearly stated or referenced in the statement of any theo-533

rems.534

• The proofs can either appear in the main paper or the supplemental material, but if535

they appear in the supplemental material, the authors are encouraged to provide a536

short proof sketch to provide intuition.537

• Inversely, any informal proof provided in the core of the paper should be comple-538

mented by formal proofs provided in appendix or supplemental material.539

• Theorems and Lemmas that the proof relies upon should be properly referenced.540

(4) Experimental Result Reproducibility541

Question: Does the paper fully disclose all the information needed to reproduce the main542

experimental results of the paper to the extent that it affects the main claims and/or conclu-543

sions of the paper (regardless of whether the code and data are provided or not)?544

Answer: [Yes]545

Justification: We provide detailed instructions on how to reproduce the main experimental546

results in §4. We will open-source the code and data upon acceptance.547

Guidelines:548

• The answer NA means that the paper does not include experiments.549

• If the paper includes experiments, a No answer to this question will not be perceived550

well by the reviewers: Making the paper reproducible is important, regardless of551

whether the code and data are provided or not.552

• If the contribution is a dataset and/or model, the authors should describe the steps553

taken to make their results reproducible or verifiable.554

• Depending on the contribution, reproducibility can be accomplished in various ways.555

For example, if the contribution is a novel architecture, describing the architecture556

fully might suffice, or if the contribution is a specific model and empirical evaluation,557

it may be necessary to either make it possible for others to replicate the model with558

the same dataset, or provide access to the model. In general. releasing code and data559

is often one good way to accomplish this, but reproducibility can also be provided via560

detailed instructions for how to replicate the results, access to a hosted model (e.g., in561

the case of a large language model), releasing of a model checkpoint, or other means562

that are appropriate to the research performed.563

• While NeurIPS does not require releasing code, the conference does require all sub-564

missions to provide some reasonable avenue for reproducibility, which may depend565

on the nature of the contribution. For example566

(a) If the contribution is primarily a new algorithm, the paper should make it clear567

how to reproduce that algorithm.568

(b) If the contribution is primarily a new model architecture, the paper should describe569

the architecture clearly and fully.570

(c) If the contribution is a new model (e.g., a large language model), then there should571

either be a way to access this model for reproducing the results or a way to re-572

produce the model (e.g., with an open-source dataset or instructions for how to573

construct the dataset).574

(d) We recognize that reproducibility may be tricky in some cases, in which case au-575

thors are welcome to describe the particular way they provide for reproducibility.576

In the case of closed-source models, it may be that access to the model is limited in577

some way (e.g., to registered users), but it should be possible for other researchers578

to have some path to reproducing or verifying the results.579

(5) Open access to data and code580
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Question: Does the paper provide open access to the data and code, with sufficient instruc-581

tions to faithfully reproduce the main experimental results, as described in supplemental582

material?583

Answer: [No]584

Justification: We will open-source the code and data upon acceptance.585

Guidelines:586

• The answer NA means that paper does not include experiments requiring code.587

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/588

public/guides/CodeSubmissionPolicy) for more details.589

• While we encourage the release of code and data, we understand that this might not590

be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not591

including code, unless this is central to the contribution (e.g., for a new open-source592

benchmark).593

• The instructions should contain the exact command and environment needed to run to594

reproduce the results. See the NeurIPS code and data submission guidelines (https:595

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.596

• The authors should provide instructions on data access and preparation, including how597

to access the raw data, preprocessed data, intermediate data, and generated data, etc.598

• The authors should provide scripts to reproduce all experimental results for the new599

proposed method and baselines. If only a subset of experiments are reproducible, they600

should state which ones are omitted from the script and why.601

• At submission time, to preserve anonymity, the authors should release anonymized602

versions (if applicable).603

• Providing as much information as possible in supplemental material (appended to the604

paper) is recommended, but including URLs to data and code is permitted.605

(6) Experimental Setting/Details606

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-607

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the608

results?609

Answer: [Yes]610

Justification: We provide detailed instructions on how to reproduce the main experimental611

results in §4.612

Guidelines:613

• The answer NA means that the paper does not include experiments.614

• The experimental setting should be presented in the core of the paper to a level of615

detail that is necessary to appreciate the results and make sense of them.616

• The full details can be provided either with the code, in appendix, or as supplemental617

material.618

(7) Experiment Statistical Significance619

Question: Does the paper report error bars suitably and correctly defined or other appropri-620

ate information about the statistical significance of the experiments?621

Answer: [No]622

Justification: Error bars are not reported because of the time limit. We will attempt to add623

them in the camera-ready version.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The authors should answer "Yes" if the results are accompanied by error bars, confi-627

dence intervals, or statistical significance tests, at least for the experiments that support628

the main claims of the paper.629

• The factors of variability that the error bars are capturing should be clearly stated (for630

example, train/test split, initialization, random drawing of some parameter, or overall631

run with given experimental conditions).632
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• The method for calculating the error bars should be explained (closed form formula,633

call to a library function, bootstrap, etc.)634

• The assumptions made should be given (e.g., Normally distributed errors).635

• It should be clear whether the error bar is the standard deviation or the standard error636

of the mean.637

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-638

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of639

Normality of errors is not verified.640

• For asymmetric distributions, the authors should be careful not to show in tables or641

figures symmetric error bars that would yield results that are out of range (e.g. negative642

error rates).643

• If error bars are reported in tables or plots, The authors should explain in the text how644

they were calculated and reference the corresponding figures or tables in the text.645

(8) Experiments Compute Resources646

Question: For each experiment, does the paper provide sufficient information on the com-647

puter resources (type of compute workers, memory, time of execution) needed to reproduce648

the experiments?649

Answer: [Yes]650

Justification: We provide detailed hardware information in §4 and the intended runtime in651

§3.2 and §5.652

Guidelines:653

• The answer NA means that the paper does not include experiments.654

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,655

or cloud provider, including relevant memory and storage.656

• The paper should provide the amount of compute required for each of the individual657

experimental runs as well as estimate the total compute.658

• The paper should disclose whether the full research project required more compute659

than the experiments reported in the paper (e.g., preliminary or failed experiments660

that didn’t make it into the paper).661

(9) Code Of Ethics662

Question: Does the research conducted in the paper conform, in every respect, with the663

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?664

Answer: [Yes]665

Justification: We have reviewed the NeurIPS Code of Ethics and believe that our research666

conforms to it.667

Guidelines:668

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.669

• If the authors answer No, they should explain the special circumstances that require a670

deviation from the Code of Ethics.671

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-672

eration due to laws or regulations in their jurisdiction).673

(10) Broader Impacts674

Question: Does the paper discuss both potential positive societal impacts and negative675

societal impacts of the work performed?676

Answer: [Yes]677

Justification: We have discussed and provided real-world examples of both positive and678

negative societal impacts in §1 and §2.679

Guidelines:680

• The answer NA means that there is no societal impact of the work performed.681

• If the authors answer NA or No, they should explain why their work has no societal682

impact or why the paper does not address societal impact.683
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• Examples of negative societal impacts include potential malicious or unintended uses684

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations685

(e.g., deployment of technologies that could make decisions that unfairly impact spe-686

cific groups), privacy considerations, and security considerations.687

• The conference expects that many papers will be foundational research and not tied688

to particular applications, let alone deployments. However, if there is a direct path to689

any negative applications, the authors should point it out. For example, it is legitimate690

to point out that an improvement in the quality of generative models could be used to691

generate deepfakes for disinformation. On the other hand, it is not needed to point out692

that a generic algorithm for optimizing neural networks could enable people to train693

models that generate Deepfakes faster.694

• The authors should consider possible harms that could arise when the technology is695

being used as intended and functioning correctly, harms that could arise when the696

technology is being used as intended but gives incorrect results, and harms following697

from (intentional or unintentional) misuse of the technology.698

• If there are negative societal impacts, the authors could also discuss possible mitiga-699

tion strategies (e.g., gated release of models, providing defenses in addition to attacks,700

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from701

feedback over time, improving the efficiency and accessibility of ML).702

(11) Safeguards703

Question: Does the paper describe safeguards that have been put in place for responsible704

release of data or models that have a high risk for misuse (e.g., pretrained language models,705

image generators, or scraped datasets)?706

Answer: [NA]707

Justification: This paper is intended for privacy protection and does not involve high-risk708

data or models.709

Guidelines:710

• The answer NA means that the paper poses no such risks.711

• Released models that have a high risk for misuse or dual-use should be released with712

necessary safeguards to allow for controlled use of the model, for example by re-713

quiring that users adhere to usage guidelines or restrictions to access the model or714

implementing safety filters.715

• Datasets that have been scraped from the Internet could pose safety risks. The authors716

should describe how they avoided releasing unsafe images.717

• We recognize that providing effective safeguards is challenging, and many papers do718

not require this, but we encourage authors to take this into account and make a best719

faith effort.720

(12) Licenses for existing assets721

Question: Are the creators or original owners of assets (e.g., code, data, models), used in722

the paper, properly credited and are the license and terms of use explicitly mentioned and723

properly respected?724

Answer: [Yes]725

Justification: We have properly cited the original code, data and models in §4.726

Guidelines:727

• The answer NA means that the paper does not use existing assets.728

• The authors should cite the original paper that produced the code package or dataset.729

• The authors should state which version of the asset is used and, if possible, include a730

URL.731

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.732

• For scraped data from a particular source (e.g., website), the copyright and terms of733

service of that source should be provided.734
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• If assets are released, the license, copyright information, and terms of use in the pack-735

age should be provided. For popular datasets, paperswithcode.com/datasets has736

curated licenses for some datasets. Their licensing guide can help determine the li-737

cense of a dataset.738

• For existing datasets that are re-packaged, both the original license and the license of739

the derived asset (if it has changed) should be provided.740

• If this information is not available online, the authors are encouraged to reach out to741

the asset’s creators.742

(13) New Assets743

Question: Are new assets introduced in the paper well documented and is the documenta-744

tion provided alongside the assets?745

Answer: [No]746

Justification: We will provide detailed documentation for the new assets upon acceptance.747

Guidelines:748

• The answer NA means that the paper does not release new assets.749

• Researchers should communicate the details of the dataset/code/model as part of their750

submissions via structured templates. This includes details about training, license,751

limitations, etc.752

• The paper should discuss whether and how consent was obtained from people whose753

asset is used.754

• At submission time, remember to anonymize your assets (if applicable). You can755

either create an anonymized URL or include an anonymized zip file.756

(14) Crowdsourcing and Research with Human Subjects757

Question: For crowdsourcing experiments and research with human subjects, does the pa-758

per include the full text of instructions given to participants and screenshots, if applicable,759

as well as details about compensation (if any)?760

Answer: [NA]761

Justification: This paper does not involve crowdsourcing nor research with human subjects.762

Guidelines:763

• The answer NA means that the paper does not involve crowdsourcing nor research764

with human subjects.765

• Including this information in the supplemental material is fine, but if the main contri-766

bution of the paper involves human subjects, then as much detail as possible should767

be included in the main paper.768

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-769

tion, or other labor should be paid at least the minimum wage in the country of the770

data collector.771

(15) Institutional Review Board (IRB) Approvals or Equivalent for Research with Human772

Subjects773

Question: Does the paper describe potential risks incurred by study participants, whether774

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)775

approvals (or an equivalent approval/review based on the requirements of your country or776

institution) were obtained?777

Answer: [NA]778

Justification: This paper does not involve crowdsourcing nor research with human subjects.779

Guidelines:780

• The answer NA means that the paper does not involve crowdsourcing nor research781

with human subjects.782

• Depending on the country in which research is conducted, IRB approval (or equiva-783

lent) may be required for any human subjects research. If you obtained IRB approval,784

you should clearly state this in the paper.785
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• We recognize that the procedures for this may vary significantly between institutions786

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the787

guidelines for their institution.788

• For initial submissions, do not include any information that would break anonymity789

(if applicable), such as the institution conducting the review.790
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Figure 1: Mask generator and different attack scenarios, including both passive and active attacks.

“i want a coffee” “remind me the day before my car is due” show me nearby musical events mention   event   in   calendar   with   others

Figure 2: Illustration of the generated masks on audios selected randomly from SLURP. Local
utterances are efficiently disrupted according to different transcripts patterns as highlighted within.

PlainText Azure Naive Whisper U-Net CQT-Diff Whisper predict (white box)
WER-SLU (%) 14.7 81.6 78.6 82.5 74.3 67.3
WER-ASR (%) 12.3 71.6 681. 71.4 65.9 64.4

Table 1: Potential attack Word Error Rate (WER) under different attack scenarios.
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Figure 3: The reconstructed waveforms of different active inpainting attacks. Dataset: SLURP.
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