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Abstract
Human memory is inherently prone to forgetting. To address
this, multimodal embedding models have been introduced,
which transform diverse real-world data into a unified em-
bedding space. These embeddings can be retrieved efficiently,
aiding mobile users in recalling past information. However,
as model complexity grows, so do its resource demands,
leading to reduced throughput and heavy computational re-
quirements that limit mobile device implementation. In this
paper, we introduce Recall, a novel on-device multimodal
embedding system optimized for resource-limited mobile
environments. Recall achieves high-throughput, accurate
retrieval by generating coarse-grained embeddings and lever-
aging query-based filtering for refined retrieval. Experimen-
tal results demonstrate that Recall delivers high-quality
embeddings with superior throughput, all while operating
unobtrusively with minimal memory and energy consump-
tion.

1 Introduction
Mobile devices are ubiquitous nowadays. They capture lots
of data in users’ daily usage, which are invaluable to making
devices intelligent assistants [1–4]. For example, this data
can be used for memory recall, helping users retrieve spe-
cific information or moments from the past. For instance,
Microsoft launches a project called Recall that makes a note
of everything ever displayed on personal computer for AI-
empowered retrospective search [5].

However, such data has not been fully utilized, attributed
not to how to store them, but how to accurately retrieve
them [6]. Specifically, smartphones have abundant storage
(up to 1TB for iPhone 15 Pro) to host the information cap-
tured at 24x7, or local network-attached storage (NAS) can
help accommodate those data as well; yet there has been a
lack of method to efficiently locate the data intended at query
time [7, 8]. The fundamental challenge is that data generated
on devices is multimodal by nature (e.g., text, image, audio,
IMU, etc), which are hard to be accurately retrieved in a
user-friendly manner, e.g., through natural language [9].
Fortunately, the recent development of multimodal em-

bedding models (MEM) has shed light on multimodal data
retrieval. For example, CLIP unifies text and imagemodalities
into one embedding space [10]. ImageBind further extends
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Figure 1: MEM workflow and its application.

the functionality to 6 modalities through contrastive learn-
ing [11]. At architecture level, those models primarily consist
of multi-layer transformer encoders [12].

In general, MEMs will catelyze two novel, exciting types of
mobile applications as shown in Figure 1: (1) cross-modality
searching, which allows users to retrieve data in any modal-
ity with user-friendly interface, e.g., language; (2) retrieval-
augmented LLM generation, which first identifies the relevant
multimodal data (e.g., a picture) in a historical database with
user prompt, and uses it to enhance the LLM generation
quality, e.g., “in the picture I took for my kid yesterday, is
she wearing a blue skirt or yellow?”.
This work addresses the emerging scenario of on-device

multimodal embedding, where MEMs operate on local de-
vices to embed continuous data streams [13–16]. The local
generation of embeddings is motivated by user privacy con-
cerns, since MEMs can greatly expand the usage of device
data, including screen UIs, recorded voices, etc. Offloading
such information to the cloud may expose it to unauthorized
access. For instance, it was revealed that Apple Siri had been
eavesdropping on uploaded user conversations to enhance
their public voice assistant model [17]. With cloud-based
MEMs, users risk comprehensive life surveillance, with no
way to verify.
Cost of on-device MEMs. Despite MEM is generalizable to
various downstream tasks [11, 18–20], it comes at a cost of
resource intensity. Specifically, our pilot experiments in §2.3
identify two key obstacles towards on-device multimodal
embedding: (1) Low embedding throughput. It takes dozens
of seconds for billion-sized MEMs to embed a single image,
which is significantly slower than the rate at which mobile
devices generate data. As a result, even if the CPU runs
continuously, only 20% of daily information can be embed-
ded. (2) High energy consumption. The slow inference speed,
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combined with the immense computing power required, re-
sults in extremely high energy consumption. Embedding
data from applications consumes even more energy than
running the applications themselves. As a result, the battery
life of mobile devices is significantly reduced, often to less
than 2 hours. Even if the embedding process is batched and
executed offline (e.g., when the device is idle), its substantial
resource demands still hinder practical deployment.
Our response: Recall. We present Recall, the first-of-
its-kind efficient on-device multimodal embedding system.
The key idea behind Recall is coarse-grained embedding,
built upon the early-exiting technique. Early exiting is a
well-known approach in both traditional CNNs [21–24] and
recent language models [25–27], but we found it is rarely
integrated with MEMs or adapted for on-device MEMs (§3.1).
In this work, we revisit the early-exiting technique from the
perspective of on-device MEMs and apply it to these models.
We refer to the embeddings generated by the exited MEMs
as coarse-grained embeddings, which are used to filter out
the most likely candidates during retrieval queries. These
candidates are then further refined at query time to finalize
accurate retrieval.
Challenges of early exiting inMEMs. While early-exiting-
based coarse-grained embedding avoids full model execution
during memorization, three key system challenges remain:
(1) Low parallelism. Early exiting does not work well with
batching, as all samples in a batch must exit before a new
batch can be processed [21]. This further exacerbates the
throughput issue on mobile devices with limited computa-
tional power. (2) Limited benefits. Only 30% of computation
can be saved by exiting early in MEMs (§3.1), even with
well-trained exiting heads. MEMs need to further reduce the
number of layers required to predict each token. (3) Perfor-
mance degradation. Some samples will inevitably exit too
early, which is especially problematic in MEMs. Incorrect
embeddings disrupt the unified embedding space, leading to
unbalanced distributions and inaccurate retrieval.

In this work, we aim to address these challenges by propos-
ing Recall, a system designed to efficiently generate pre-
cise embeddings for multiple modalities in the background
through three hardware-algorithm co-designs.
Data-aware pre-exit predictor (§3.2): To enhance data

parallelism, the key is to estimate exit points early for better
system scheduling. From a data perspective, information con-
tent varies across messages. Thus, we introduce a data-aware
pre-exit predictor for coarse-grained embeddings. Unlike tra-
ditional methods that determine exit values after each branch
computation, our approach uses a unified, lightweight early-
exit predictor model applicable to all modalities. This capa-
bility facilitates efficient batching and pipeline execution,
significantly improving encoding throughput.

Progressive LoRA healing (§3.3): To ensure high re-
trieval performance even with earlier exits, we retrofit low-
rank adaptation (LoRA) [28], a popular parameter-efficient
fine-tuning method, to optimize the exited coarse-grained
embeddings. Traditional LoRA fine-tuning is not designed for
early exiting because it requires separate tuning for each exit
branch. This results in duplicated forward passes for multiple
exit branches during a single inference procedure. Instead of
retraining the entire LoRA from scratch, we propose sharing
previously tuned LoRA weights for each newly added layer.
Intermediate results can be cached and reused in subsequent
forward passes, improving embedding throughput. We also
observe that the optimal tuning step, which determines how
many LoRA layers are tuned together, varies significantly.
To address this, we design a dynamic step scheduler, orches-
trated with the data-aware pre-exit predictor, prioritizing
healing at exit points with the most sample exits.
Speculative fine-grained retrieval (§3.4): To enhance

search performance, coarse-grained embeddings with high
potential require refinement. Recall implements a specu-
lative retrieval mechanism that refines these embeddings
during query time. The remaining layers of the exited MEMs
serve as a live encoder to refine coarse-grained embeddings
and finalize retrieval. To ensure balanced retrieval, the first
filtering round uses query embeddings of various granulari-
ties, which are generated by different exits in the model. The
top candidates from each granularity are then selected for a
second round of matching, ensuring accurate final retrieval.
This approach offloads fine-grained embedding refinement
to query time, where the search objective is clear, enabling
rapid memorization and precise recall.
Results We implement Recall atop ImageBind, a widely
used MEM pretrained by Meta [11]. We evaluate Recall
on three devices: NVIDIA ORIN [29], Raspberry Pi 4B [30],
and a flagship smartphone with Qualcomm Snapdragon
8Gen3 [31]. Recall delivers an average 14.9× improvement
in throughput and 13.1× reduction in energy consumption
compared to the original MEM. It efficiently embeds the vast
majority of daily usage data, minimizing battery drain. Our
key designs are essential for achieving these improvements
while maintaining high accuracy. The combined system in-
curs less than 5% relative accuracy loss compared to the
full-sized MEM, with query delays under 5 seconds. Addi-
tionally, we conduct a case study using recent Twitter data
and a user study on mobile application traces, demonstrating
the practicality of Recall in real-world scenarios.
Contributions. We make the following contributions:

• We prototype the first MEM-empowered mobile search
service architecture. Through user studies and pilot
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experiments, we identify challenges related to low em-
bedding throughput and high energy consumption1.
• We introduce Recall, an efficient on-device multi-
modal embedding system that addresses these chal-
lenges. Recall incorporates three novel techniques:
preemptive exit for dynamic execution scheduling, pro-
gressive model healing for cache optimization, and
speculative retrieval to correct premature exits.
• Extensive experiments demonstrate that Recall sig-
nificantly improves throughput and reduces energy
consumption while maintaining search performance,
making it practical for modern mobile devices.

2 Background and Motivations
2.1 Multimodal Embedding
Unified multimodal embedding Embedding was initially
proposed to vectorize text data for understanding similari-
ties between different texts [32]. Large language models use
embedding layers to generate text embeddings [12, 33]. Sim-
ilarly, vision, audio, and sensor data can also be transformed
into vectorized embeddings [34–36]. However, embedding
methods focused on a single modality cannot access infor-
mation across different modalities due to the gap between
their embedding spaces.

To bridge this gap, multimodal embedding models (MEMs)
have been developed to unify different modalities into a
single embedding space, enhancing the model’s ability to
understand and bind multimodal inputs. CLIP [10] aligns
text and vision by jointly training on image-text pairs, using
contrastive learning to map both modalities into a shared
space while maintaining their distinction through a dual-
tower architecture. ImageBind [11] extends this to align six
modalities, including text, vision, audio, depth, thermal, and
IMU readings. Each modality is processed by a separate en-
coder, and the embeddings are fused in a multimodal head
to generate a unified embedding. ImageBind demonstrates
strong zero-shot classification and retrieval performance
across these modalities, matching or outperforming single-
modality models. This is achieved through training on large-
scale multimodal data.
Multimodal mobile applications MEMs optimize align-
ment between high-quality representations acrossmodalities.
As such, multimodal information can be composed to enable
a rich variety of mobile context-aware applications. For ex-
ample, MEMs could embed visual, audio, text and sensor data
experienced on a mobile device into a personalized mem-
ory palace [37, 38]. Whenever users want to recall a specific
moment or items, they can query the memory palace with
a multimodal query, and the system will retrieve the most

1Codebases and collected trace data will be made public after acceptance.
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Figure 2: Recall provides system-level service that re-
members daily mobile interaction for recalling.

relevant items. MEMs can also facilitate mobile agents to
iteract with users in a more human-like manner [1, 39, 40].
On-deviceMultimodal Embedding Data for embedding is
continuously sourced from end users and is often private and
sensitive. Evidence suggests that cloud service providers may
be curious about uploaded data to improve their services [17],
and database leaks and breaches pose significant threats [41].
Conducting embedding locally prevents the need to upload
daily viewed, sensed, or heard data to the cloud, offering
strong privacy protection. From the cloud perspective, a
single user views over 6,000 images per day, according to our
user study (§2.3), requiring approximately 1065.6KJ of energy
and 0.8 GPU hours. For 1 billion daily active users, cloud
providers would need 1.1 TWh of energy and 0.8M GPU
hours daily, costing over $100 million per day. On-device
multimodal embedding shifts this cost to end users, making
the service more practical to deploy.

2.2 MEM-empowered Search Service
As shown in Figure 2, we prototype an on-device MEM-
powered search service to embed multimodal streaming data
for future retrieval, functioning like a memory palace [37].
We specifically target mobile devices, including smartphones
and IoT devices with similar computing capabilities. These
devices have usable but weaker processing units compared
to cloud servers, with limited battery and memory available
for long-term background processes [42].
From the device perspective, the service consists of two

runtimes:
3
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Figure 4: Demo of cross-modal retrieval.

• Embedding runtime (Offline remembering in the
backend) continuously detects and stores newly gen-
erated multimodal content, such as downloaded im-
ages, scanned texts, listened-to audio, and logged IMU
sensor data. Each item is processed layer by layer
through MEMs2, generating 1024-dimensional embed-
dings in a unified space.
• Query runtime (Online recall in the frontend) is
triggered when the user searches for a specific item
or performs other tasks based on search results. To
retrieve relevant items, the query embedding is com-
pared with stored embeddings to find the most similar
matches. If the raw data corresponding to the matched
embeddings aligns with the query intent, the query is
tagged as successful.

System developers prepare the embedding model offline,
typically by fine-tuning with powerful cloud GPUs, using
widely-used pretrained multimodal embedding models [10,
11]. They define the expected offline costs and online perfor-
mance for each application by configuring system hyperpa-
rameters before deployment, as shown in Figure 2.

2.3 Preliminary Measurements
We conducted a user study to collect viewed images from
daily mobile applications used by 8 volunteers, aged 20 to 52,
over the course of a week. To achieve this, we developed an
Android application with accessibility services [45] to detect
and store newly appeared visual content3. One collected
trace is shown as an example in Figure 3.
Observation: MEMs are contextually expressive.

2Deep learning models are often too large for mobile devices, leading to
inference processes being terminated by the OS. Current mobile inference
engines provide layerwise execution to support large models [43, 44].
3Images are hashed to include only new content. Images smaller than 100KB
are excluded to avoid capturing icons and minor system elements.
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ference speed across different devices compared to the
average image generation speed of various mobile ap-
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consumption of the Jetson ORIN.

All images and corresponding texts are collected and em-
bedded using ImageBind [11]. By aligning multimodal em-
beddings into a common space, ImageBind can effectively
retrieve semantically relevant content from different modal-
ities using human-friendly input formats. For example, as
shown in Figure 4, the sound of fireworks retrieves images of
fireworks from the albums and their corresponding textual
notes with high confidence. A rigorous numerical analysis
across various tasks will be presented in §5.
Challenge: MEMs are resource-intensive.
To assess the cost of on-device embedding, we ran Im-

ageBind inference on four different mobile devices, ranging
from development boards to commodity smartphones.
Huge workloads and low throughput. Despite their

contextually expressive capabilities, the embedding speed is
too slow to keep pace with the figures generated by applica-
tions. As shown in Figure 5a, on all CPU-based devices, the
encoding speed is insufficient for real-time application use.
Over a full day of usage, the speed is only sufficient to em-
bed 20% of the figures generated by applications, requiring
more than 100 hours to process all figures from a single day.
Even with a GPU, Jetson NANO [46] struggles to handle an
entertainment task generating 36.3 images per minute. The
only exception is the NVIDIA ORIN [29], which performs
comparably to a cloud server using an NVIDIA A40 [47].
However, continuously running the CPU or GPU on mobile
devices is impractical due to battery depletion.

Battery depletion. The heavy embedding workloads and
low throughput significantly strain battery life. Continuous
embedding drains the battery even faster than running the
app itself. To illustrate, we used ImageBind to continuously
embed figures from daily apps. As shown in Figure 5b, the em-
bedding process consumes more energy than the apps them-
selves. For example, even when quantized to INT4, MEMs
consume 1.8× more energy than gaming. We also measured
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GPU energy consumption on anNVIDIAORIN4.While GPUs
process data faster, they consume more energy than CPUs,
making them unsuitable for long-term embedding in the
current MEM design.

3 Design
3.1 Recall Overview
In this work, we develop Recall, an efficient on-device multi-
modal embedding system to address the challenges outlined
above. Recall is designed to minimize embedding energy
costs and query latency while maximizing throughput and
achieving near state-of-the-art retrieval accuracy. Addition-
ally, Recall shall integrate easily into off-the-shelf mobile
applications to enhance user experience without requiring
complex hardware modifications. Lastly, Recall aims to be
both versatile and transferable across a wide range of tasks.
To achieve these goals, we leverage early exit, a widely stud-
ied optimization technique, as the backbone of our system.
Key building block: early exit terminates the computa-
tion of a deep neural network at an intermediate layer based
on prediction confidence. Typically, a prediction head is in-
troduced at the end of each layer to serve as a separate exit
branch, allowing samples to be correctly classified at the
earliest possible layer.
We choose early exit as the backbone of Recall because

it aligns with our design principles: (1) Early exit is mo-
bile hardware-friendly: it requires no sparsification kernel
compilation and integrates easily into existing multimodal
embedding applications. Most mobile devices do not fully
support advanced sparsification or quantization optimiza-
tions, providing little to no benefit during inference [49–53].
(2) Early exit preserves the raw structure of MEMs, main-
taining their generalization capacity while bypassing only
downstream alignment. Additionally, early exit is caching-
friendly, as the top layers share the same bottom weights
with the exited layers, allowing intermediate activations to
be reused and reducing duplicated computations. Other tech-
niques like pruning and quantization cannot fully leverage
the intermediate computation of coarse-grained embeddings.
This reduction is crucial for Recall, as it eliminates redun-
dant forward passes, accelerating both embedding and query
phases, which we discuss in detail in §3.4.
Simplified workflow: As shown in Figure 6, Recall pro-
vides a memory encoder for clients to build coarse-grained
embeddings offline, while the rest of the model functions as a
live encoder for precise online retrieval. (1) System developer
preparation: Developers first refine widely-used pretrained
multimodal models to reduce the number of layers needed for

4Current mobile inference engines cannot effectively utilize GPUs for MEM
execution [14, 43, 48].

token prediction (§3.3). The refined model is then deployed
to mobile devices for offline embedding. (2) Client offline em-
bedding: Users employ part of the memory encoder to build
superficial embeddings for pre-exit prediction (§3.2). After
pre-exit, samples with the same exits are batched and pro-
cessed layer by layer through pipeline scheduling to generate
coarse-grained embeddings. (3) Client online query: During
the query phase, the query is embedded for matching. Likely
candidates are filtered and refined from the coarse-grained
embeddings, which are then matched with the query embed-
ding to finalize retrieval (§3.4).
In short, we offload the full-sized embedding cost to the

query phase, which is infrequent and carries precise retrieval
information [7]. This mirrors the human brain, which retains
key information in long-term memory and recalls details
only when necessary [54]. Retrieval accuracy and latency
are sacrificed within acceptable limits to significantly reduce
embedding costs, as demonstrated in §5.
Unique challenges introduced by early exit: While early
exit reduces computational load, its application in mobile
MEMs introduces several unique challenges: (1) Low paral-
lelism: Early exit is incompatible with batching, as all samples
in a batch must exit before processing the next [21]. This sig-
nificantly reduces throughput on mobile devices with limited
computational resources. Without batching, it is also harder
to amortize loading costs, further slowing layer-wise infer-
ence. (2) Limited benefits: MEMs are not naturally designed
for early prediction and tend to distribute computation across
all layers. For instance, ImageBind’s 32-layer vision module
requires an average of 21.4 layers to process data, limiting
computation savings to 33.1%. MEMs need to reduce the
layers required for token prediction and minimize computa-
tional resources spent on hesitant or fluctuating predictions.
(3) Performance degradation: Despite thorough training of
exit branches and predictors, some samples may exit too
early, leading to degraded search performance. This is es-
pecially problematic in MEMs, where incorrect embeddings
can disrupt the unified embedding space, causing unbalanced
distributions and inaccurate retrieval.

3.2 Data-aware Pre-exit Predictor
Traditionally, most early-exit methods decide whether to
exit at the end of each branch computation [21, 27, 55]. This
approach limits hardware acceleration and batching, as exit
points vary by data, leading to inconsistent workloads within
batches and memory fragmentation [21, 22, 56]. Although
some predictive models for CNNs [22] predict exit values in
advance, they cannot scale to MEMs due to their convolution-
specific design. In this work, we propose a unified, light-
weight early-exit predictor model for all modalities, derived
from intermediate data embeddings. The data-aware pre-exit
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predictor preemptively decides the exit point for MEMs, en-
abling batch scheduling for better parallelism and helping to
amortize and hide loading time.
Data-aware coarse-grained embedding granularity Dif-
ferent data contains varying amounts of information content.
Unlike previous work that defines predictive models manu-
ally, we propose using intermediate embeddings to predict
the exit value without supervision. First, we build the fine-
grained embedding F𝑥 for each data point 𝑥 ∈ X as a proxy
query label. Next, we feed the input into the pre-trained
MEM layer by layer, obtaining a set of coarse-grained em-
beddings C𝑖𝑥 at different granularities 𝑖 ∈ range(layers). We
then measure the similarity between the fine-grained and
coarse-grained embeddings. When the similarity between F𝑥
and C𝑖𝑥 becomes the largest among F𝑥 and C𝑖X. query retrieves
C𝑖𝑥 from C𝑖

𝑋
successfully. We mark it as a valid embedding

exit. The intermediate embeddings are fed into the predictor
model, and an MLP model is trained to predict its exit value.

Algorithm 1: Our Pre-exit Predictor
input :Superficial Embedding Layer 𝑁 ;

Predict model 𝜙𝑆 ;
Burst-in Streaming Input, X.

output :Embedding, E.

1 Function Data-aware_Coarse-grained_Embedding(𝑁 , 𝜙𝑆 , X):
2 Embedding← Batched_Layerwise_Encoding(0, 𝑁 , X);
3 Predicted Exit 𝑒 ← 𝜙𝑆 (E) ;
4 Group X into X𝑒 with the same exit seperately;
5 forall X𝑒 do
6 Embedding← Batched_Layerwise_Encoding(𝑁 , 𝑒 , X𝑒 );
7 Store Embedding E in the disk.
8 Function Batched_Layerwise_Encoding(𝑖 , 𝑗 , X):
9 X𝐵 ← Batching X;

10 forall X𝐵 do
11 while 𝑖<𝑗 do
12 Encode X𝑖

𝑏
; load layer 𝑖+1 concurrently;

13 Embedding← 𝑃𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 (Intermediate results);
14 return Embedding.

This method outperforms fixed early-exit baselines, as will
be shown in §5.2.
Batch-friendly and pipeline execution As shown in Fig-
ure 7, with the data-aware pre-exit predictor, we can predict
the exit value before embedding, enabling efficient batch-
ing of input data. In addition to early-exit-specific batching,
we propose pipelining the layer-by-layer encoding process,
where loading and embedding are conducted simultaneously.
Pre-exit Predictor in detail We summarize the use of the
pre-exit predictor in Algorithm 1. First, we load Layer𝑖 and
encode all input data as a batch, while Layer𝑖+1 is loaded
concurrently to minimize loading time. This process iterates
until all 𝑁 layers are loaded. Next, we feed the intermediate
embeddings (i.e., superficial embeddings) to the predictor
model. Data are then batched according to the predicted exit
values. These steps are repeated for each batch until all data
reach their predicted exits.
Pre-exit predictor cost Training the predictor is efficient,
requiring only tens of iterations on hundreds of samples,
taking just a few minutes on a single GPU. The trained pre-
dictor is lightweight, with a memory footprint of around
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Figure 9: Comparison between Progressive LoRA and
previous methods.

1MB. The main concern is the cost of computing the superfi-
cial embedding. Fortunately, this embedding can be reused
for subsequent coarse-grained embeddings, as discussed in
§3.4.
Micro Experiments are conducted to demonstrate the ef-
fectiveness of the pre-exit predictor. As shown in Figure 8b,
prediction accuracy improves with the increase of superficial
embedding layers. As indicated by Figure 8a, most samples
require the complexity of more than 7 layers. With 𝑁 = 7,
the predicted accuracy is 85%, the average predicted layer
is 15.5, and the average actual layer is 16.5. An interesting
finding is that as the intermediate embeddings are fed layer
by layer, the deeper the layers, the more accurately the pre-
dictor model can determine the exit value. This improvement
occurs because deeper layer embeddings are more discrimi-
native and better suited for predicting the final embedding.

3.3 Progressive LoRA Healing
Original MEMs are not designed for early exit, as they tend
to distribute computation across all layers. As a result, most
data requires many layers before exiting. We propose a pro-
gressive LoRA approach to heal the model, reducing the
number of layers needed for each token.
Parameter-efficient LoRA Healing Previous early-exit
healing approaches [26] use the parameter-efficient fine-
tuning method, LoRA [28], to distill knowledge into lower
layers, reducing the number of layers required for each token.
Naive LoRA tuning fine-tunes a separate LoRA suite for each
early-exit layer. For instance, with 32 exits, 32 LoRA suites
are required. While this ensures good performance, it has a
significant drawback: the embedding from layer 𝑛 cannot be
reused to compute the embedding for layer 𝑛 + 1. As illus-
trated in Figure 9, this occurs because LoRA 𝑙

1,...,𝑛
𝑛 for layer 𝑛

is not the same as the first 𝑛 layers of LoRA 𝑙
1,...,𝑛+1
𝑛+1 . Unlike

standard embeddings, which complete all layers sequentially,
early-exit methods must check whether each layer is the
final one. If layer 𝑛’s embedding is incompatible with layer
𝑛 + 1, the early-exit method must recompute the embedding
for layer 𝑛 + 1 from scratch, negating many of the benefits
of early exit.
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Figure 10: The progressive steps affect tuning perfor-
mance.

On cloud servers, computation is not a major issue due to
their high processing power, and reducing model weights
to alleviate I/O pressure is the primary concern. However,
for mobile devices with limited computational power, I/O
pressure is less of a concern since they typically serve only
one user at a time.
Progressive LoRA healing (P-LoRA) Recall proposes a
progressive LoRA healing method to address this issue, aim-
ing to use a single LoRA suite for all exits. To achieve this, we
tune the LoRA layer by layer. For each exit, we tune only the
LoRA for the current exit while keeping the previous exits’
LoRA fixed. Since the tunable parameters are fewer than the
fixed ones, the healing capacity is weaker compared to using
separate LoRA suites, which negatively impacts convergence
(i.e., fine-grained embedding) performance, as shown in Fig-
ure 10. To mitigate this, instead of tuning one LoRA layer
at a time, we progressively tune more LoRA layers at later
exits. Similar to the window size in convolutional layers, we
define the number of tuned LoRA layers as the LoRA step.
P-LoRA step decision As shown in Figure 10, the optimal
healing step varies across exit layers. In general, the larger
the 𝑛, the greater the per-step healing capacity, due to the
increased number of tunable parameters. However, if step 4
is applied to all exits, exits 2 and 3 will miss opportunities for
healing. This is acceptable for the top layers, as they already
have a strong feature representation from earlier healing.
Larger steps benefit later layers by improving convergence
performance. For smaller exits, earlier features are still weak
and require healing at each exit.
To determine the optimal step during training, we use

information from the predicted exit statistics. We set the
training step at the pivot of the predicted exit statistics, en-
suring that most exits are healed with an appropriate step
size. This approach prioritizes smaller exits, aligning with the
heuristic that most data exits occur at earlier layers, which
require more focused healing. At later stages, larger steps
enhance fine-grained performance during queries without
significantly affecting exit flexibility.
Training Details The healing P-LoRA is designed to be
parameter-efficient and highly transferable. Application de-
velopers can customize the personalized healing adapter
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Figure 11: Retrieval accuracy across different embed-
ding granularities, i.e., embeddings generated by dif-
ferent MEM layer exits.

during the testing phase. During deployment, healing occurs
iteratively, and embedding granularity can be updated in
real time to better fit the data and synchronize with their
representations. In this work, for simplicity, the embedding
granularity predictor was trained on zero-shot embeddings.
The training objective is the fine-grained embedding, not
the query embedding. We leave the output layer untuned to
mitigate the dynamic embedding mismatch issue (discussed
in §3.4). Even without the healing P-LoRA, we demonstrate
that Recall can still achieve usable retrieval performance,
as shown in §5.2.

3.4 Speculative Fine-grained Retrieval
With coarse-grained embeddings, we can filter out poten-
tial candidates. Further fine-grained embeddings are then
processed on these filtered candidates to complete the final
retrieval. However, using the default query embedding with
a full-capacity encoder does not achieve precise top-1 re-
trieval (R@1), as shown in Figure 11. This poor performance
stems from two unique challenges.
# Challenge 1: Reduced embedding capacity. Even if we

modify the model to predict early and align it with the full
embedding, exiting early during inference inevitably reduces
accuracy compared to full-capacity embedding. Fortunately,
while coarse-grained embeddings may not achieve precise
top-1 retrieval, they can filter out the most likely candidates
when expanding the retrieval range to top-10 as shown in
Figure 11a. Thus, this challenge can be alleviated by refining
the coarse-grained embeddings filtered with query informa-
tion.
# Challenge 2: Unbalanced embedding distribution. As de-

scribed in §3.2, different data exits at different layers, leading
to unbalanced embeddings in storage. Although each em-
bedding is fine-tuned to approximate the full embedding,
embeddings from different exit layers retain unique charac-
teristics. For example, samples from similar exit layers tend
to have similar embedding distributions. As a result, a query
embedding from a full-capacity encoder cannot retrieve these
embeddings precisely. This phenomenon is shown in Fig-
ure 11. For single-modality retrieval on the HARSMART
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Figure 12: Coarse-grained embeddings are specula-
tively filtered. The highest-ranking embedding candi-
dates are refined to fine-grained embeddings for final
retrieval.
dataset, using the full-capacity MEM to retrieve filtered em-
beddings results in a top-1 accuracy of only 24.9%, 56.6%
lower than using a 2-layer query embedding, since over 99%
of samples exit before 3 layers during local embedding. The
same phenomenon occurs in the cross-modal TWITTER
dataset.
Speculative retrieval Inspired by speculative decoding [57],
a popular acceleration technique for language models, we
propose feeding the query embedding at different granu-
larities to achieve balanced filtering, as shown in Figure 12.
(1) Speculative filtering: The top 𝑘 candidates at each query
granularity are preserved for the second round of filtering.
(2) Global verifying: The second round selects the final top 𝑘
candidates from all granularities. If a sample ID is duplicated,
the candidate with the next highest score is preserved. (3)
Fine-grained correcting: Finally, the coarse-grained embed-
dings are refined using the rest of the model to generate
fine-grained embeddings, which are then matched with the
query for more precise retrieval.
Intermediate results reuse As shown in Figure 9, the
coarse-grained embedding can be reused for fine-grained
embedding. However, due to the down-sampling structure of
the output head, the coarse-grained embedding cannot be di-
rectly used for fine-grained embedding. To simplify this, we
store the intermediate activations before each down-sample
layer. This approach allows reusing the superficial embed-
ding to reduce the cost of data-aware coarse-grained embed-
ding, improving embedding throughput by up to 30%. It also
extends the coarse-grained embedding to fine-grained em-
bedding without encoding from scratch, accelerating query
latency by up to 70%.
Cache analysis The drawback of this approach is the need
to cache intermediate activations. Fortunately, we can quan-
tize them to INT4 and de-quantize them during reuse, which
takes significantly less time than re-computation (around
10 ms per embedding). During prediction, the activations
can remain in RAM. Once coarse-grained embedding begins,
these cached activations replace the intermediate variables
typically stored in RAM during embedding, so no additional
peak memory footprint is required. After the process ends,
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Dataset Modality Size Metric Perf.
COCO [60] Text-Image 123,287 R@1 0.54
FLICKR [61] Text-Image 8,091 R@1 0.70
CLOTHO [62] Text-Audio 3,938 R@10 0.30

HARSMART [63] IMU 10,299 Acc. 0.78
Table 1: Description of the datasets used. The embedded
modality is highlighted.

the activations are released sequentially. For cache reuse in
the fine-grained embedding procedure, the activations are
temporarily stored in storage, which is less constrained than
RAM, until the query occurs. The loading time is approxi-
mately 1 ms for 10 activations. Once an image is queried, it
is updated to the fine-grained embedding, and its storage
can be freed.

4 Implementation and Setup
Recall is built on ImageBind [11], an open-source multi-
modal embedding framework developed by Meta. For match-
ing, we use matrix multiplication, as it is not the primary
bottleneck in query cost. Further vector database optimiza-
tions, such as FAISS [58], are orthogonal to Recall. LoRA
tuning and embedding accuracy evaluations are emulated
on a GPU server to enable faster iterations and energy sav-
ings. Embedding inference latency, power consumption, and
memory usage are directly measured by running Recall on
a mobile device using the open-source on-device multimodal
inference engine mllm [43]. Since mllm [43] currently does
not support the IMU modality and lacks GPU optimizations,
we also use PyTorch on a development board for broader
dataset comparisons.
Baselines We compare Recall to the following alternatives:
(1) Multimodal Embedding Model (MEM) without any opti-
mization. (2) BranchyNet [21], using a traditional early-exit
mechanism. (3) Fluid Batching [59], a novel early-exit-
aware batching algorithm that allows sample preemption at
runtime. For completeness, we also include a naive baseline
without layer-wise execution, though it incurs an unafford-
able memory footprint on certain mobile devices. For a fair
comparison, all baselines are equipped with ImageBind fine-
tuned for the downstream task.
Metrics We evaluate the performance of Recall using the
following metrics: (1) Accuracy: Retrieval accuracy for each
task, with relative accuracy compared to the full-sized model,
as shown in Table 1. (2) Latency: Query latency on mobile
devices, defined as the time from query initiation to com-
pletion. (3) Throughput: The amount of content processed
per second or minute, assuming all samples are buffered in
storage. (4) Energy Consumption: Energy consumed during
the embedding process. (5) Memory Usage: Peak memory
footprint during the embedding process.

Dataset As summarized in Table 1, we use four publicly
available datasets across four modalities to demonstrate the
effectiveness of Recall: (1) COCO dataset: Used for text-image
retrieval, it contains 123k images, each paired with five cap-
tions. We use the validation subset of COCO to evaluate in-
ference performance, with each caption retrieving its cor-
responding image. (2) FLICKR dataset: Used for image-text
retrieval, it consists of images paired with textual descrip-
tions. (3) CLOTHO dataset: Used for text-audio retrieval, it con-
tains audio clips paired with textual descriptions, enabling
evaluation across audio and text modalities. (4) HARSMART
dataset: Used for IMU retrieval, it employs fine-grained em-
beddings as queries to assess performance in retrieving IMU
data based on embeddings.
Additionally, to demonstrate the effectiveness of Recall

in real-world scenarios, we conduct a case study using re-
cent internet data that was not seen by the model during
pretraining. Following prior empirical literature on Twitter
analysis [64], we collect a recent publicly available dataset of
Twitter memes, referred to as TWITTER. The TWITTER dataset
contains 803 images and their corresponding meme descrip-
tions across various up-to-date topics.
Hardware andQuantization We test Recall on theNVIDIA
ORIN (ORIN) [29], Raspberry Pi 4B (RPI4B) [30], and a flag-
ship smartphonewithQualcommSnapdragon 8Gen3 (8GEN3) [31].
Since ORIN’s GPU does not support INT4 computation, we
load the raw model with FP32 precision. Recall runs on
the RPI4B’s CPU due to the lack of CUDA support. For the
8GEN3 smartphone, Recall runs on the CPUwith the model
quantized to INT4 precision to reduce memory consump-
tion.

5 Evaluation
We evaluate Recall to address the following key questions:
(1) How much improvement does Recall achieve in terms
of embedding throughput and relative retrieval accuracy un-
der different memory budgets across various devices? (2)
How much performance improvement does each component
contribute? (3) What is Recall’s performance under differ-
ent query latency budgets? (4) What is the system cost of
Recall, including embedding energy and memory consump-
tion? (5) How does Recall perform on commodity mobile
phones in daily usage scenarios?

5.1 End-to-end Performance
First, we present the end-to-end embedding throughput per-
formance under the layer-wise inference setting, a more
user-friendly approach for always-on daily applications due
to its low memory footprint.
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Figure 13: Illustration of throughput-to-accuracy on Jetson TX2. For fairness, only layerwise baselines are included.

Dataset COCO FLICKER CLOTHO SENSOR
Throughput
(Contents / s)

Relative
Accuracy

ORIN
(FP32)

RPI4B
(FP32)

8GEN3
(INT4)

Relative
Accuracy

ORIN
(FP32)

RPI4B
(FP32)

8GEN3
(INT4)

Relative
Accuracy

ORIN
(FP32)

RPI4B
(FP32)

8GEN3
(INT4)

Relative
Accuracy

ORIN
(FP32)

RPI4B
(FP32)

8GEN3
(INT4)

MEM (w/o layerwise)
100.0%

OOM OOM 0.17
100.0%

OOM OOM 0.16
100%

83.3 0.26 0.34
100%

127 0.88 /
MEM 1.92 0.04 0.05 1.92 0.04 0.05 5.23 0.22 0.27 31.3 0.74 /

MEM (batched) 6.22 0.05 0.10 6.22 0.05 0.10 33 0.25 0.32 72 0.84 /
BranchyNet (w/o layerwise)

71.0%
OOM OOM 0.25

92.7%
OOM OOM 0.19

81%
211 0.66 0.85

57%
405 2.81 /

BranchyNet 2.88 0.06 0.07 2.21 0.04 0.06 29.6 0.55 0.69 99.9 2.36 /
Fluid Batch 9.29 0.07 0.16 7.13 0.05 0.12 83.4 0.63 0.80 230 2.68 /

Ours 95.0% 22.5 0.10 0.31 95.1% 16.2 0.07 0.22 98.1% 133 0.66 0.84 95.4% 435 4.52 /
Ours (w/o layerwise) 47.9 0.10 0.33 33.5 0.07 0.23 211 0.66 0.85 680 4.71 /

Table 2: Throughput vs. relative retrieval accuracy. ‘/’ means not supported. ‘OOM’ means out of device memory.

Recall achieves an order ofmagnitude improvement
in throughput. Table 2 summarizes the embedding through-
put comparison, while Figure 13 shows that Recall can
achieve a 14.9× average throughput improvement compared
to MEM. This gain is primarily driven by the early-exit mecha-
nism, which allows the model to exit early when the embed-
ding is sufficiently accurate, avoiding unnecessary compu-
tations. Additionally, after parameter-efficient healing, the
coarse-grained embeddings can convey similar semantics
to fine-grained embeddings. For instance, in the text-image
retrieval task on the COCO dataset, Recall delivers an 11.7×
throughput improvement with less than 3% accuracy loss.
Regarding stronger baselines, Fluid Batch introduces a

early-exit-aware batchingmechanism, achieving a 3× through-
put improvement over the naive early-exit baseline BranchyNet
and 5× over MEM under the layer-wise inference setting.
However, Recall still outperforms Fluid Batch across all
datasets, providing up to a 3× speedup in throughput. The
advantages of Recall arise not only from the early-exit
mechanism but also from the pre-exit strategy, which pre-
dictively adjusts the embedding granularity based on the
sample’s characteristics.
Although Recall primarily targets layer-wise scenarios,

we also evaluated throughput performance when loading all
encoders simultaneously. While this approach can provide
significant throughput gains, it presents challenges such
as out-of-memory errors on ORIN and RPI, especially for
larger models like vision encoders. Recall maintains high
throughput in a layer-wise setting, making it a more practical
solution for resource-constrained devices. For instance, on
the 8GEN3 mobile, Recall can process data up to 2.5× faster
than the naive MEM without loading layers sequentially,
while reducing memory footprint by up to 3.3×.
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Figure 14: Throughput-to-accuracy trade-off with and
without Recall’s key designs, demonstrating their sig-
nificance. PE refers to pre-exited coarse-grained em-
beddings without fine-grained upgrading during the
query phase.

Interestingly, we find that healing the exited larger MEMs
is more effective than using a smaller-sized foundationmodel.
For example, using CLIP-b/16 with 85.6M parameters results
in embeddings that are 2.7× faster than ImageBind but sig-
nificantly reduces the ability to embed different modalities
concisely, leading to up to 39.8% accuracy loss.

5.2 Significance of Key Designs
Effect of Exit Healing As illustrated in Figure 14, while the
zero-shot embedding of ImageBind has the generalization
ability across different datasets, the exit healing mechanism
is crucial for enhancing Recall’s performance. As shown
by the green dotted lines, retrieval accuracy significantly
improves after healing the exited branches. For instance,
compared to zero-shot MEM, exit healing boosts retrieval accu-
racy by 37.8% and 13.2% on average for the COCO and FLICKR
datasets, respectively.
Effect of Data-aware Pre-exit After healing, Recall lever-
ages the pre-exit mechanism to dynamically adjust embed-
ding granularity based on each sample’s characteristics. It
can predictively exit at the optimal layer to balance the trade-
off between accuracy and throughput. As shown in Figure 14,
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Figure 15: Performance under different query latency
budgets.

compared to exiting all samples at a fixed layer, the data-
aware pre-exit mechanism improves retrieval accuracy by
up to 19.8%. The higher coarse-grained retrieval performance
is crucial for achieving optimal fine-grained retrieval.
Effect of Speculative Fine-grained Query With a default
query candidate pool size of 10, retrieval accuracy using
filtered fine-grained embeddings is, on average, 35.5% higher
than the previous coarse-grained retrieval accuracy. This
improvement is due to the fact that over 95% of the targets
retrievable by full-sized MEMs are successfully retrieved
from the toplist of coarse-grained embeddings. As a result,
the embedding accuracy of Recall is comparable to that of
the full-sized MEM.

5.3 Impact of Query Latency Budget
Although query cost is negligible compared to embedding
cost in the long term—since queries occur less frequently
than daily always-on embeddings—it is immediately notice-
able to the user. Thus, we show Recall’s performance under
different query latency budgets in Figure 15. Query latency
consists of three components: text embedding, matching,
and fine-grained embedding. Baseline methods with mem-
ory encoders require only the first two steps, typically taking
2 seconds. With a higher query latency budget, we can im-
prove fine-grained embedding accuracy from 27% to 55%.
Additionally, similar to web cookies [65], the query pro-

cess can skip the complex fine-grained embedding when it is
repeated, making it more efficient for multi-query scenarios
where frequently queried items are retrieved faster. Once a
local embedding is queried, its embedding is permanently
upgraded.

5.4 System Cost
Energy Consumption Figure 16a shows the normalized en-
ergy consumption of Recall and various baselines. Recall
reduces energy consumption by up to 18.2× and 13.1× on av-
erage compared to layerwise-executed baselines. Even com-
pared to naive MEM without layerwise execution, Recall
still achieves up to 3.3× energy savings on average. This is
due to Recall’s ability to determine the optimal number of
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Figure 17: Performance analysis during 30 minutes of
Twitter browsing. Device: 8GEN3 [31].

layers for embedding and offload embedding computation
to the less frequent querying process.
Memory Footprint The layer-wise method is much more
memory-efficient than holding the entire model in memory.
This is because model weights are the primary contributor to
memory footprint. Recall is inherently memory-efficient, as
it only loads the necessary layers one by one for each sample.
Compared to naive MEM5, Recall can reduce memory usage
by up to 7.7×.
Storage Cost We store the embeddings of the items in INT4
precision. Each embedding is 1024-dimensional, resulting in
a storage cost of approximately 5KB per item. Based on the
trace statistics in §2.2, typical users encounter around 6000
images daily. Thus, the storage cost for image embeddings
is roughly 29.3MB per day. Annually, this amounts to about
10.4GB, which is comparable to the storage required for
a high-quality movie. In contrast, the current off-the-shelf
solution Rewind [66] consumes 14GB of storage per month
on average, as officially reported [67].

5.5 Case Study: Twitter Meme Retrieval
As with the previous datasets, we evaluated the performance
of Recall on the TWITTER dataset. A total of 828 figures
were embedded according to the trace data collected. Naive
MEM takes over an hour to complete the retrieval task on
a fully utilized CPU. In comparison, Recall achieves a 4×

5Memory footprint of naive MEM is tested in a memory-unlimited server
environment.
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Figure 18: Energy and throughput comparison of em-
bedding images viewed under real mobile traces.
throughput improvement, completing the task within 27 min-
utes. Moreover, Recall demonstrates significant resource
savings, using 5× less memory and 10× less energy than
the baseline. This is due to sequentially loading layers and
reducing the total number of layers executed. Storing these
figure embeddings requires approximately 3MB, which is
comparable to the size of a single raw image. During the
query phase, the query latency is 0.5s, which is acceptable
for daily use, as surveyed. Our case study demonstrates that
Recall can provide high-quality embedding representation
with highly optimized system performance in real-world
usage scenarios.

5.6 User Study: Mobile Application Trace
To further validate Recall, we conducted a user study by
collecting real user data and simulating the system’s perfor-
mance in embedding images generated during daily mobile
app usage6. Without Recall, the naive MEM system would
require more than 6 battery charges per day, and over 20%
of the images would remain unembedded due to time con-
straints. In contrast, Recall reduces the number of required
charges by 3×, allowing all daily generated data to be embed-
ded. This user study highlights Recall’s ability to efficiently
manage and embed large volumes of data, reducing the bur-
den on battery life and ensuring that the vast majority of
daily usage data is preserved and embedded in real-time.

6 Related Work
Early-Exiting While early exiting has been a known tech-
nique in both traditional CNNs and recent language mod-
els [21, 24, 26, 56], it is rarely integrated with MEMs for mo-
bile devices. BranchyNet [21] showed that features learned
in early layers are often sufficient for classification, with
6We do not account for charging time or the energy used by the applications
themselves to provide a more straightforward comparison between naive
MEM and Recall.

only a few difficult samples requiring deeper layers. DynEx-
its [22] introduced learnable early-exit branch weights to
avoid the pitfalls of manually defined loss weights, while
DVABatch [23] dynamically adjusted batch sizes to allow
independent query exits, though with limited improvement.
Layer Skip [27] and DeeCap [24] utilized early exits for tasks
like text decoding and image captioning. Gromov et al. [26]
demonstrated that removing deeper layers often does not
degrade performance due to the similarity between adjacent
deep layers. In this work, we propose the first early-exiting
system for on-device MEMs, providing a lightweight and
efficient solution for mobile devices.
Predictive Early Exit Predictive Exit [56] designed a low-
cost prediction engine for CNNs, using zero padding, filter
generation, and one-dimensional convolution to predict exit
points in computer vision tasks. Dong et al. [68] introduced
an exit predictor that uses depthwise separable convolu-
tions to generate scores for deciding whether to skip certain
exits, reverting to confidence-based decisions when neces-
sary. However, these methods are complex and not suited
for attention-based transformers, where matrix multiplica-
tion dominates. In summary, while effective for CNNs, these
approaches do not scale well to transformer-based models
due to their convolution-specific designs. Hamed et al. [25]
integrated early exits at the end of encoders to balance pre-
dictive performance and computational efficiency, but they
did not address exit timing or hardware compatibility. Our
system introduces a hardware-friendly, lightweight predictor
for efficient early exits in transformers, tailored for mobile
devices, ensuring both performance and accuracy.
Multimodal Embedding Model According to Zhang et
al. [69], over 80% (35 out of 43) of multimodal foundation
models utilize ImageBind or its subset, CLIP, as theirmodality
encoder. This widespread adoption highlights the efficiency
and effectiveness of ImageBind in managingmultimodal data.
Further optimizations have enhanced the fusion of vision and
text [25, 70], as well as the fusion of dynamic sensing [71].
However, these methods do not address new modalities in
open-set recognition, as handled by ImageBind. For the first
time, we enable efficient multimodal embedding in a unified
space with usable search accuracy on mobile devices.

7 Conclusion
We propose Recall, a novel MEM-empowered mobile ser-
vice that enables user-friendly searching for multimodal
mobile data. To improve the efficiency of on-device mul-
timodal embedding, Recall is built on early exiting tech-
niques to generate coarse-grained embeddings. Recall in-
troduces three key optimizations: predicting exits, healing
exited branches, and fine-grained retrieval. These enhance-
ments adapt traditional early-exit methods for mobile MEMs,

12
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resulting in higher embedding throughput, improved embed-
ding quality, and better retrieval precision. Our extensive
experiments demonstrate that Recall significantly accel-
erates the multimodal embedding process while ensuring
accurate searches.
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