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ABSTRACT
In today’s landscape, smartphones have evolved into hubs for
hosting a multitude of deep learning models aimed at local
execution. A key realization driving this work is the notable
fragmentation among these models, characterized by varied
architectures, operators, and implementations. This fragmen-
tation imposes a significant burden on the comprehensive
optimization of hardware, system settings, and algorithms.
Buoyed by the recent strides in large foundation models,

this work introduces a pioneering paradigm for mobile AI:
a collaborative management approach between the mobile
OS and hardware, overseeing a foundational model capable
of serving a broad spectrum of mobile AI tasks, if not all.
This foundational model resides within the NPU and remains
impervious to app or OS revisions, akin to firmware. Con-
currently, each app contributes a concise, offline fine-tuned
"adapter" tailored to distinct downstream tasks. From this
concept emerges a concrete instantiation known as M4. It
amalgamates a curated selection of publicly available Large
Language Models (LLMs) and facilitates dynamic data flow.
This concept’s viability is substantiated through the creation
of an exhaustive benchmark encompassing 38 mobile AI
tasks spanning 50 datasets, including domains such as Com-
puter Vision (CV), Natural Language Processing (NLP), audio,
sensing, and multimodal inputs. Spanning this benchmark,
M4 unveils its impressive performance. It attains accuracy
parity in 85% of tasks, demonstrates improved scalability
in terms of storage and memory, and offers satisfactory in-
ference speed on Commercial Off-The-Shelf (COTS) mobile
devices fortified with NPU support. This stands in stark
contrast to task-specific models tailored for individual appli-
cations.

1 INTRODUCTION
Machine learning is revolutionizing mobile applications by
facilitating a more automated, intelligent, and efficient in-
teraction between users and devices. These advancements
enable humans to enjoy the convenience provided by deep
models at all times and locations, from voice assistants [1, 23]
to image enhancement tools [75, 88, 92], and augmented re-
ality [10, 64, 105]. As reported in [2, 93], the number of deep

∗These authors contributed equally to this work.

models incorporated within individual devices is growing
rapidly, making mobile devices a primary vehicle for AI.
Executing deep models on devices offers benefits in data

privacy and service availability but also demands significant
resources such as memory, energy, and time. For efficient and
scalable on-device execution of these models, a comprehen-
sive co-design approach that integrates hardware, system,
and algorithms is needed. However, this task is challenged by
the fragmented ecosystem of mobile deep models: they signifi-
cantly differ in architecture, operators, and implementations
[8, 19, 30, 38, 76]. This fragmentation, which often results in
ad-hoc optimization efforts [3, 63, 71], seems unavoidable.
It originates from the complex nature of mobile AI tasks
(CV/NLP/TTS/HAR/etc.), multimodal input data from vari-
ous sensors (camera, screen, microphone, etc.), and diverse
application demands (high accuracy, low latency, etc.).
Such fragmentation fundamentally undermines the effi-

ciency of constructing an efficient and scalable mobile AI
stack, notably in the three following aspects:
• Hardware aspect: it complicates the design of ASIC-based
accelerators (NPUs), by forcing difficult trade-offs between
generality and performance. §2.2 shows that mobile NPUs
can achieve up to a 22× speedup over multi-core CPUs on
the Qualcomm Snapdragon 8+ Gen 1 platform. However,
this advantage only extends to a small fraction (around
8%) of deep models due to the lack of operator support.

• OS aspect: It hampers the system-wise sharing of weights
and computations across different applications. Mobile
apps often perform similar meta-ML tasks (e.g., object de-
tection for augmented reality, image enhancement, OCR
apps), and there exist temporal, spatial, and semantic cor-
relations among the input data [25]. However, exploit-
ing such similarities to reduce memory or computing via
cache-reuse is currently impractical, due to the model frag-
mentation and OSes’ lack of visibility into those models
managed at the application level.

• Software aspect: It makes library-level optimizations ad-
hoc. As noted in [102], there is a wide array of frameworks
available to developers, but their performance can vary
significantly across different models and devices. No sin-
gle solution excels universally, often leaving developers
struggling to differentiate between them.

Mobile foundation model as firmware. In order to fun-
damentally tackle the aforementioned issues, we propose a

1

ar
X

iv
:2

30
8.

14
36

3v
1 

 [
cs

.A
I]

  2
8 

A
ug

 2
02

3



Arxiv, somewhere,
Yuan et al.

novel paradigm for mobile AI in which the OS and hardware
co-manage a foundation model that is capable of address-
ing most, if not all, mobile AI tasks. This model, akin to
firmware, is exposed as a system service to applications sim-
ilar to the unified ML interface NNAPI [22] in Android. It
remains unaltered by apps or the OS. To utilize it, each ap-
plication embeds it a lightweight "adapter" that is fine-tuned
offline for downstream tasks. This approach could greatly
simplify NPU design and allow the OS to take control of
AI computing across applications, thereby facilitating the
sharing of weights, computations, and task scheduling. This
vision becomes feasible thanks to recent advancements in
the ML community, specifically: (1) The establishment of
pre-trained large foundation models [58, 69, 81] that capture
extensive knowledge from vast Internet data; (2) The devel-
opment of algorithms to accurately align multimodal data
input [20, 77]; (3) The demonstration of parameter-efficient
fine-tuning (PEFT)methods like LoRA [27, 54] that efficiently
adapt pre-trained models to diverse downstream tasks.
While the vision is intriguing, there are two key missing

pieces to turn it into reality. (1) How to build such a one-
size-fits-all foundation model to ubiquitously handle highly
diversified, multimodal mobile AI tasks? While research on
the multimodal foundation model has achieved impressive
progress in recent years, they are still not adequate in our
case: most of them [43, 57, 65] handle only a small fixed num-
ber of input/output modalities (e.g., text-image) and cannot
be flexibly adapted to more; a concurrent effort CoDi [77]
with this work enables any-to-any generation across three
modalities (image-text-audio), but requires more than 34GBs
of on-device storage/memory and does not support IMU sen-
sor data of mobile devices. (2) How to properly evaluate the
performance of the proposed foundation model? To our best
knowledge, there has been no comprehensive benchmark or
a set of standard metrics for mobile AI tasks.
M4: a composable mobile foundation model (§3). We
introduce M4, the first architectural design and implementa-
tion of a multimodal mobile foundation model. Unlike prior
approaches like CoDi that directly use (Nx) heavy encoders
to align multimodal input data and (Mx) heavy decoders to
generate specific data format, M4 adds a backbone module in
between (a “narrow waist”) that comprehends and reasons
for each downstream task. Through such “N-1-M” design,
M4 is able to achieve better accuracy-to-parameter efficiency
as compared to traditional “N-M” architecture. Moreover,
M4 could be partially activated by various tasks based on
their characteristics (input/output modality, the need for
complex comprehension, etc.). We have fully prototyped M4
with only pre-trained models publicly available from Hug-
gingFace [90], which guarantees the reproducibility of M4
and also demonstrates its compatibility with the existing
LLM ecosystem. Overall, M4 contains 9.2B parameters and

demands 7.5GBs of peak memory footprint. Such a size is
only affordable on high-end mobile devices nowadays, but
we deem it to be soon feasible for more commons whose
memory/storage capacity is significantly increasing yearly.
mAIBench: a comprehensivemobileAI benchmark (§4.1).
To assess M4 and future endeavors, we have constructed
the first comprehensive benchmark for diverse mobile AI
tasks, named mAIBench. Through an extensive examination
of real-world mobile AI and publications in mobile venues,
M4 presently includes 38 important mobile AI tasks and 50
classic datasets. The tasks include five different input/output
data modalities (vision, text, audio, IMU, and mix). Each task
is also linked with a task-specific model, representative of
the DNN in the pre-LLM era (e.g., ResNet-152 for image clas-
sification [26] and LSTM for input token prediction [29]). We
also standardize a set of keymetrics to quantify the capability
of a foundation model, as will be shown next.
Key results (§4).We then conduct extensive experiments
to evaluate M4 using mAIBench on two 8xA100 GPU servers.
We summarize our major results and analysis.

• Ubiquity– M4 effectively supports most tasks and datasets
in mAIBench. Compared with the models tailored for each
task, M4 shows comparable accuracy on 85% of the 50 datasets
and a significant improvement on 4 of them (including image
captioning and text-to-image retrieval). In only six instances
does M4 experience nontrivial accuracy degradation, marked
by a greater than 10% gap. The system also demonstrates
promising zero-shot and few-shot capabilities, achieving
usable accuracy on certain tasks without any fine-tuning.
Moreover, quantization minimally affects the performance
of M4: when reduced to 8 bits on two tested tasks, accuracy
degradation ranges only between 0.2% and 0.8%.

• Scalability – Despite M4 foundation model’s heavier foot-
print, its adaptation to downstream mobile tasks Is lightweight
and therefore more scalable. The current implementation
of M4 encompasses ∼10 billion parameters, in contrast to
the mere 1 million to 500 million parameters found in task-
specific models. Nevertheless, the "adapters" of M4 require
only 1,000 to 10 million parameters, which enhances scalabil-
ity across various mobile AI tasks, given that the foundation
model is shared. For example, on a device with 12GB of mem-
ory, M4 (4-bit quantized) with all 50 adapters can be hosted in
memory, eliminating cold-start latency, whereas only 20 of 50
task-specific models would fit the same memory constraints.

•Velocity – M4 is much slower than task-specific models, yet
the gap might be mitigated through a highly-optimized NPU.
On a high-end autonomous board Jetson Orin NX (16GB
memory), M4 runs 18× slower on average. We also test the
performance of M4 on smartphone CPUs ∗ , which shows

∗Currently, M4 cannot run on COTS smartphones GPU/NPU due to the lack
of operator support.
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that the prediction delay could be too slow, i.e., 2.1 secs
to classify an image or 240 msecs to generate a token in
QA. However, such a performance degradation might be
addressed by running M4 on a highly optimized NPU, since
existing NPUs already offer up to a 22-fold speedup over
CPUs, as mentioned in §2.2.

• Simplicity – M4 requires fewer operators for execution,
greatly simplifying hardware design. In the ONNX format,
M4 utilizes a mere 39 different mathematical operators, in
contrast to the cumulative 156 operators required by 50 task-
specific models. More impressively, M4 can expand its capa-
bilities using the same number of operators. The traditional
approach, on the other hand, continuously introduces new
operators [96, 106], thereby complicating NPU design.
In addition to conventional mobile AI tasks, M4 also en-

ables more complex and innovative mobile applications, e.g.,
a sophisticated assistant capable of processing multimodal
input data, understanding user intentions, and responding
with precision as demonstrated in §4.7.
ContributionsMajor contributions are summarized below.
• We delineate a vision for a mobile foundation model, har-
nessing cutting-edge machine learning techniques to con-
solidate the mobile AI ecosystem and foster integrated
hardware-system co-design.

• We design and prototype the first mobile foundation model
with public, pre-trained LLMs.

• We have constructed the first comprehensive mobile AI
benchmark, through which our prototype demonstrates
significant potential in catering to widespread mobile AI
tasks, while exhibiting strong scalability, flexibility, and
velocity in its performance.

Open-source We plan to make all materials generated in
this work (M4, mAIBench, as well as lessons learned) publicly
available to facilitate mobile AI research once published.

2 BACKGROUND AND MOTIVATIONS
2.1 Mobile AI Characteristics
Mobile AI is pervasive. An important trend of AI deploy-
ment is the migration of deep learning inference tasks from
cloud data centers to smartphones, aiming to minimize user-
perceived latency and better preserve data privacy [7, 12, 24].
For instance, it is reported that Android apps embedded with
on-device DNNs on the Google Play market have experi-
enced a remarkable 60% growth from February 2020 to April
2021 [2]; Such DL-enhanced apps have been downloaded
by users billions of times. Unsurprisingly, mobile devices
like smartphones and laptops have become a major carriers
of intelligence, where DNN inference happens frequently
anywhere anytime even without users being aware of it.
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Figure 1: Empirical study on mobile NN processors:
(1) A longitudinal analysis of operator support on
CPU/NPU; (2) The performance gap between NPU and
CPU/GPU on Google Pixel 7 Pro.

Mobile DNNs are fragmented. Unlike cloud AI where
each computing unit (e.g., an NVIDIA GPU) only serves one
model for user requests [18, 56, 70], a mobile device needs to
handle highly diversifiedmobile AI tasks by itself. Such diver-
sification is inevitable since mobile AI tasks could leverage
multimodal sensor data from devices, including imagery data
from cameras, audio data from microphones, IMU data from
motion sensors, and textual/code data from users typing.
Each modality itself has a wide spectrum of applications, e.g.,
Google Translate for NLP and Apple Siri for Audio. Mean-
while, there are a wide range of cross-modal applications
in mobile scenarios: visual question answering [104], image
captioning [11], and multimedia content retrieval [49]. For
example, the "Search by Text" feature of Google Photos en-
ables users to search for images using arbitrary text queries.
Research indicates that the number of such multimodal ap-
plications on mobile devices has nearly doubled over the
past two years, owing to the rapid advancement of multi-
modal technologies [95]. As reported in a recent in-the-wild
empirical study [2], the DNNs handling different modality
data are highly heterogeneous in terms of their architecture
and internal operators.

2.2 A Dilemma of Mobile NPU
The fragmented DNNs severely burden the hardware, system,
and library design of the mobile AI stack, as discussed in §1.
In this subsection, we further highlight the burdens borne
by hardware, or more specifically, mobile NPUs. We conduct
pilot measurements to reveal the status quo of the mobile
NPU ecosystem, focusing on whether they have delivered
satisfactory performance gains over accompanying mobile
CPU/GPU in running typical mobile DNNs.
The DNN operator support of mobile NPU is signifi-
cantly lagged behind general-purpose processors. We
conducted an investigation on the number of supported NN
operators by TensorFlow and TFLite. As illustrated in Fig-
ure 1 (a), we have two key observations: (1) The number of
NN operator types is still increasing noticeably lately, e.g.,
from 1240 to 1399 as supported by TensorFlow from 2019 to
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(a) Breakdown analysis of how DNNs are supported on mobile NPUs

b) NPU/GPU runtime speedup over CPU c) Not supported operators

22×
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Figure 2: An empirical study of 110 in-the-wild DNNs
crawled from public sources on Google Pixel 7 Pro.

2023. Such evolvement of DNN architecture poses significant
challenges in designing ubiquitous and efficient mobile NPU
design. (2) Mobile chips, especially its NPU, support only
a small portion of existing NN operators. TFLite supports
less than 160 operators on mobile CPUs, which is nearly 90%
fewer than TensorFlow. Furthermore, the number of sup-
ported operators by mobile NPU (EdgeTPU on Pixel 7 Pro)
is even fewer, i.e., 33 in 2022 and 63 in 2023. Consequently,
mobile NPUs might benefit only a small number of DNNs.
For the lucky DNNs fully supported, mobile NPU is
able to deliver significant inference speedup and en-
ergy reduction compared to mobile CPU/GPU. As an
ASIC-based customized processor, mobile NPU is expected
to offer faster and more energy-efficient DNN inference. To
understand the performance of contemporary mobile NPU,
we measure the inference latency and energy consumption
of EdgeTPU on Google Pixel 7 Pro. The results are illustrated
in Figure 1 (b) and (c). ResNet-152, the NPU achieves an in-
ference latency of only 76ms, which is 39× and 11× faster
than the accompanying CPU (4-cores used) and GPU, re-
spectively. Similarly, on BERT-base, the NPU consumes only
0.3J of energy per image, while the CPU and GPU consume
significantly higher amounts of energy, i.e., 1.7J (5.78×) and
9.0J (30×), respectively.
However, such significant benefits only apply to a very
small portion of in-the-wild popular DNNs. To further
understand the ubiquity of mobile NPU, we download more
representative DNNs and test their performance. In total,
we have found 110 TensorFlow-format DNNs from Model
Zoo [97] and HuggingFace [15], prioritized based on their
stars and download times. We then try to convert them to
TFLite format using the official tool developed by Google and
measure their performance on Google Pixel 7 Pro. As shown

in Figure 2 (a), unfortunately, only 8% of those models can
entirely run on mobile NPU, while for the rest: 13% fail to be
converted to TFLite format; 30% fail to run on mobile NPU;
and 49% require CPU-NPU co-running due to the lack of
NN operator support by NPU. Figure 2 (b) further illustrates
the performance of those DNNs on devices. It reveals that,
only the 8% fully supported DNNs gain significant improve-
ment over CPUs (i.e., > 20× median speedup), while the
rest (either running partly on GPU/NPU or entirely on GPU)
obtain much less profound speedup. In fact, for the DNNs
that require CPU-NPU co-running, the inference speed is
even not as good as running on mobile GPU. Figure 2 (c)
further digs into the reason for such phenomenon: the NPU-
incompatible DNNs need to be split into many sub-models to
be scheduled between CPU and NPU (e.g., median number
of 50); therefore the data movement and format exchange
could severely delay the inference.

2.3 Emergence of Foundation Models
This work is motivated by the recent rising of transformer-
based foundation models [83].
Foundation models are renovating AI ecosystem; the
model design is converging. In recent years, significant ad-
vancements have beenwitnessed in the domain of large-scale
neural networks employed for language, image, audio under-
standing and generation. Representing a milestone achieve-
ment, GPT-3 [4] has demonstrated impressive performance
across numerous tasks, showcasing its remarkable language
comprehension and generation capabilities, thereby opening
new avenues in human-computer interaction and intelligent
assistance domains. In the visual domain, Meta’s SAM [36]
exhibits exceptional zero-shot proficiency and generaliza-
tion capacity. Besides, there are a few multimodal foundation
models such as Kosmos-1 [28] and PaLM-E [9] that are ca-
pable of handling inputs from various modalities, enabling
them to accomplish even more exciting tasks. All aforemen-
tioned models employ the same transformer architecture
[83], while only differing in the concrete layer configura-
tions or input modality pre-processing. In the foreseeable
future, AI model designs will increasingly converge.
However, there has beenno effort in building onemodel
to fit highly diversified mobile AI tasks. None of the
aforementioned foundation models is capable of (not even
close to) solving all mobile AI tasks. A single modality model
(such as GPT for NLP) cannot comprehend or generate data
in other modalities. Existing multimodal models (such as
CLIP for CV-NLP) can only deal with very limited multi-
modal AI tasks. One might seek to include a foundation
model for each < 𝑖𝑛𝑝𝑢𝑡 : 𝑀1, 𝑜𝑢𝑡𝑝𝑢𝑡 : 𝑀2 > pair to solve
the above issue, but: (1) It is not parameter-efficient as the
comprehension and conversion between different modality
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Figure 3: M4 architecture. Only the three greenmodules
are trainable, while the rest are fixed.

data share inherent common sense [43, 65]; (2) It cannot
support AI tasks that take multimodal input or output, such
as visual question answering [104]. There have been ad-hoc
approaches to deal with those issues [74], yet we are not
aware of any systematic strategy to build a one-size-fits-all
foundation model for diversified mobile AI tasks.

3 M4 DESIGN AND PROTOTYPING
In this section, we present the first design and prototype of
a mobile foundation model named M4.

3.1 Overview
Design principles M4 is a one-size-fits-all foundationmodel
for diversified mobile AI tasks. It is designed with follow-
ing principles: (1) unified: instead of building independent
foundation models for different possible modalities, M4 pro-
vides a unified architecture that maximizes the capability
sharing across different modalities, thus beingmore resource-
efficient and extensible; (2) elastic: M4 can be easily scaled
out to more modalities (either for input or output), e.g., for
new types of sensor/app data; (3) multimodal: M4 can take
multimodal input or generate multimodal output as needed,
e.g., for advanced mobile applications like visual question
answering or audio caption.
Model architecture Figure 3 illustrates the overall archi-
tecture of M4, which consists of three major components:
• Multimodal Embedding is to align the contents of differ-
ent modalities by converting multimodal input data into
a unified representation (i.e., a vector). It is typically im-
plemented as a set of transformer encoders [20] for each
modality, except that audio has two independent encoders
to differentiate the context information (e.g., background
noise, speaker emotions) and spoken language (e.g., auto-
matic speech recognition).
• Foundation Backbone is to comprehend and reason about
the input data. It encapsulates abundant knowledge to un-
derstand complex embedded data, performs task-specific

inference, and generates easily intelligible output for gener-
ator. It uses a decoder-based architecture trained on huge
amount of textual dataset since language has been acknowl-
edged as the most representative type of data [13, 58, 81].
The backbone is the most heavy part of M4.
• Multimodal Embedding is to adapt the output from the
foundation backbone to task-specifc data format. For clas-
sification tasks, it is simply a MLP with softmax layer; for
image tasks, it is a stable diffusion model [68]; etc.
Trainable parameters M4 contains three trainable parts
to be fine-tuned for downstream mobile AI tasks: two PEFT
modules inserted to the multimodal embedding and founda-
tion backbone, respectively; and one MLP layer that adapts
the output of multimodal embedding to the required repre-
sentation of the foundation backbone. In later experiments,
we use LoRA as the default PEFT method, but also report
results for other PEFT methods. As will be demonstrated in
§4, the trainable parameter size is trivial compared to the pre-
trained part of M4 and is also much smaller than traditional
state-of-the-art DNNs.

3.2 Prototyping with Off-the-Shelf LLMs
We have fully prototyped M4 with only pre-trained, off-the-
shelf models publicly available from HuggingFace [90]. It
guarantees the reproducibility of M4 and also demonstrates
its compatibility with the existing LLM ecosystem.
• Multimodal Embedding. Multimodal embedding is com-
posed of five parallel modules with transoformer encoder-
only architecture: Image (IMG_enc), Text (TXT_enc), Iner-
tial Measurement Unit (IMU_enc), Audio-Background (AUD-
B_enc), and Audio-Intent (AUD-I_enc). The IMG_enc employs
the Vision Transformer (ViT) architecture and is utilized
to encode visual information derived from input images
into a sequential matrix of embeddings. The TXT_enc for
input text is based on the CLIP architecture with a 12-layer
encoder [65]. The IMU_enc for IMU data is a lightweight
6-layer encoder transformer model [65]. The AUD-B_enc
encoder is also derived from ViT and is used for encoding au-
dio backgrounds [21]. The pre-trained weights of the above
four encoders are from ImageBind [20] multimodal model.
The AUD-I_enc encoder is based on a sequence-to-sequence
Transformer model for encoding audio intents, with pre-
trained weights from Whisper.tiny.en [66].
• Foundation Backbone.Weuse LLaMA-7B (INT8 format) [81],
pre-trained on one trillion tokens by Meta, as M4’s backbone.
Released in Feb. 2023, LLaMA is a research project aimed
at creating a more versatile and efficient language model. It
emphasizes training on a broad array of multilingual and
multitask supervised data to enhance performance across
various natural language processing tasks.
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Types Params (109) Format Architecture GFLOPs

Embedding

IMG_enc [20] 0.6328 FP16 Encoder-only 167.5963
TXT_enc [20] 0.354 FP16 Encoder-only 23.4189

AUD-B_enc [20] 0.0862 FP16 Encoder-only 61.4679
AUD-I_enc [66] 0.037 FP16 Encoder-Decoder 26
IMU_enc [20] 0.0196 FP16 Encoder-only 5.1417

Backbone LLaMA [81] 6.28 INT8 Decoder-only 312

Generator
TTS_dec < 0.01 FP32 Encoder-Decoder 8.58

IMG_dec [68] 1.0663 FP16 Encoder-Decoder 267
GEN_dec [81] < 0.01 FP16 MLP 125.0

Table 1: M4 sub-model parameters.

1 2
3

Embedding Backbone GeneratorInput

3
2
1

T3
2
T33T34

T14T15

T37

T16T18T19T20T21T22
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4

4

Figure 4: Execution path to each task in Table 3.

• Multimodal Generator. Multimodal generator is composed
of three parallel decoders: Text-to-Speech (TTS_dec), Image
(IMG_dec) and Generation (GEN_dec). The TTS_dec decoder
is a integral element within the FAIRSEQ [59], the open-
source sequence modeling toolkit released by Meta, tasked
with converting the input text into corresponding speech
signals. The IMG_dec decoder is a key component of the
Diffusion Model, which generates image output from text
input. The GEN_dec decoder serves as distinctive entities
employed to lead the backbone language model to perform
generation tasks, the parameters of which are initialized
with the last layer of pre-trained LLaMA. Classification tasks
could be reformulated with a generation prompt according
to prompt learning literature [48] and re-use the generation
decoderGEN_dec. Or it could re-initialize a newMLP decoder
according to traditional classification literature.
System complexity Table 1 presents the model complexity
of M4’s different modules. The model comprises five types of
embeddings (encoders), with parameter sizes ranging from
0.03B to 0.63B, and complexities ranging from 26GFLOPs
to 167GFLOPs. The backbone of M4 is LLaMA, with a pa-
rameter count of 6.3B, and a complexity of 312GFLOPs. The
LLaMA backbone is the largest component (86.1%) in terms
of parameter size within the entire model. The generators
(decoders) contribute trivially to the overall model size.

3.3 Multi-path Task Execution
Task-specific partial activation of M4. Not every task
needs to go through the end-to-end workflow of M4, i.e.,
embedding-backbone-generator. Inspired by the early-exit
inference [39, 79, 107] andmulti-path design in hardware [85,
86], we propose a multi-path task execution design for M4.
For simpler tasks that can be well solved by only part of
M4’s modules, we allow partial activation of M4 to reduce the

computing complexity. In practice, developers could assign
specific execution path to different tasks to achieve the best
performance. In Figure 4, we have pre-defined 4 paths that
can suffice the 50 mobile tasks we have investigated.
• Path-1 means a full-model activation of M4. Tasks taking
this path often require cross-modality alignment and com-
plicated task compresion/reasoning. For instance: spoken
language understanding and visual question answering.

• Path-2 activates only the multimodal embedding, often
used by tasks that can be accomplished through cross-
modality (often language-X) alignment. For instance, im-
age classification aligns the images with their correspond-
ing textual labels (e.g., “cat”); human activity recognition
tasks align the IMU data with the textual activity types
(e.g., “walking”). In practice, the labels are embedded into
a carefully designed prompt as shown below.

• Path-3 activates only the backbone and generator, mostly
used by language tasks since M4’s backbone can directly
take raw textual input. For instance: input word prediction
and machine translation.

• Path-4 activates only a specific generator, as taken by very
few tasks. For instance: super-resolution can be accom-
plished by the visual generator (IMG_dec); text-to-speech
is accomplished by the speech generator (TTS_dec).

Training details Fine-tuning M4 follows three steps: (1)
input data processing: NLP tasks take as input the context
information along with task-specific descriptive language
prompts. CV/Audio/IMU tasks will do alike according to
previous work [20]. For more intricate tasks, such as object
detection, we utilize a region proposal network to generate a
set of object proposals [108]. (2) tunable weights setting: For
tasks going through backbone (Path 1, 2), only PEFT parame-
ters in backbones are activated while freezing encoder PEFT
modules. For discriminative tasks that only go through en-
coders (Path 3), the encoder PEFT modules will be activated.
Linear mapping contacting encoders and backbones will be
always activated for shaping alignment. (3) model weights
updating: During each training iteration, we compute the
CrossEntropy loss from actual labels and predicted tokens,
utilizing it to update the PEFT/MLP parameters.
Prompt design Two parts of M4 need careful prompt en-
gineering [34, 73, 109] to fully exploit its potential: the text
embedding and foundation backbone. We have designed
prompts for each mobile AI task in §4.1, and Table 2 lists a
few of them as exemplifications.

4 EXPERIMENTS AND ANALYSIS
4.1 Benchmark and Setups
mAIBench: a comprehensive mobile AI benchmark. As
the very first effort for a one-size-fits-all mobile foundation
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Tasks Path Prompts at Text Embedding and Backbone
Image classification Path-3 [E]: There is a photo of a [Image_label: car].

Machine translation Path-2 [B]: Translate the following sentences from
[SRC_language: en] to [TGT_language: de].

Code generation Path-2 [B]: Write an assembly code according
to the [sentence] requirements.

HAR Path-3 [E]: The human is [Activity_label: sitting].

Audio captioning Path-1 [E]: Give a very short caption of the audio,
the caption have 16 words at most.

Image captioning Path-1 [E]: Give a very short caption of the image,
the caption have 16 words at most.

Video classification Path-3 [E]: There is a video of [Video_label: abseiling].
OCR Path-3 [E]: A [negative / positive] review of a movie.

Table 2: A few prompt examples used in M4. [E] denotes
the Text Embedding. [B] denotes the Backbone.

model, a pivotal undertaking is the comprehensive evalua-
tion of its versatility across diverse mobile AI tasks. There-
fore, we embark on constructing an exhaustive mobile AI
benchmark mAIBench, encompassing 38 tasks spanning 50
public datasets, as shown in Table 3. Those tasks are essen-
tial to real-world mobile applications (e.g., translation, object
detection, and voice assistant). Many of these tasks have also
received substantial attention within the mobile community
itself [6, 33, 35, 37, 62, 72, 84, 94, 98, 103]. Each task is accom-
panied by its designated accuracy metric. mAIBench includes
5 modality domains: NLP, CV, Audio, Sensing (IMU), and
Misc (Multimodal). While the majority of tasks are tailored
to smartphones, we extend our scope to encompass pivotal
devices such as laptops (code generation), autonomous cars
(traffic sign classification), and IoT cameras (Counting).

To understand M4’s performance, we select one task-specific
model (namely TS-model) for each dataset as a baseline. The
selection of these models adheres to two primary criteria:
(1) They must remain within the confines of mobile device
resource constraints, specifically with fewer than 1 billion
parameters; (2) The model accuracy shall be representative to
the status quo on mobile devices, though not necessary to be
absolute state-of-the-art. Consequently, our model selection
draws primarily from two sources: open-source endeavors
showcased at prominent mobile conferences like MobiCom
and MobiSys during the past five years, and contemporary
models showcased on the Paperwithcode platform [61]. A
comprehensive list of employed TS-models is provided in
Table 3, including instances such as ResNet-152 [26] for im-
age classification, RoBERTa [52] for question answering, and
CRDNN [91] for spoken language understanding.
HardwareTo obtain the accuracy of M4 aswell as TS-models
on each dataset, our fine-tuning/testing experiments are per-
formed on two GPU servers, each with 8x NVIDIA A100. In
total, our experiments take 100,000 GPU-hours. To under-
stand the runtime performance (memory, latency, energy,
etc.) of M4 on real-world devices, we use two typical mobile
devices: (1) Pixel 7 Pro smartphone, a high-end smartphone
released in Oct. 2022 that has 12GB RAM, 256GB storage,

Octa-core CPU, Mali-G710 MP7 GPU, and an edge TPU. (2)
NVIDIA Jetson ORIN NX, a high-end edge board for au-
tonomous robotics or cars released in Feb. 2023 that has
16GB RAM, 64GB storage, and 1024-core NVIDIA Ampere
architecture GPU with 32 Tensor Cores.

4.2 Overall Accuracy
M4 can well support most mobile AI tasks and datasets.
Figure 5 illustrates M4’s overall performance improvement
(or degradation) compared to TS-models. As observed, M4
can achieve comparable performance across 85% of tasks,
with over 50% of these tasks showcasing considerable perfor-
mance improvement. For example on T1 input word predic-
tion, T42 audio captioning, and T46 text-to-image retrieval,
M4 yields accuracy increments of 6%, 19%, and 28% respec-
tively.. Such commendable improvements are attributed to
the well-engineered design of M4, characterized by its uni-
fied, adaptive, and multimodal foundation model. While M4’s
prowess is manifest, it is prudent to acknowledge marginal
performance dips (not surpassing 10%) observed in specific
tasks. Instances such as T2 question answering, T15 object
detection, and T32 automatic speech recognition exemplify
this trend, with accuracy experiencing nominal decrements
of 1%, 5%, and 2%, respectively. However, even in these cases,
M4 remains viable for deployment with usable performance.
Additionally, M4 only showcases diminished performance in
4 tasks, with accuracy drop-offs of up to 20%. The reason
behind this reduction stems from the unique requirements
of certain low-resource translation tasks, necessitating ex-
tensive language knowledge that isn’t inherently embedded
within the current foundation model’s pre-training phase.
M4 can be further enhanced with enhanced foundation
models. Figure 6 illustrates the performance improvement
realized by M4 through the integration of the latest LLaMA2,
in comparison to LLaMA. LLaMA2, a refined evolution of its
precursor, LLaMA, introduces heightened capabilities and
marked improvements [81]. Released in July 2023, LLaMA2
marks a substantial leap forward, expanding the context
window and ushering in the innovation of grouped-query
attention. This novel architectural element empowers the
model with rapid information processing capabilities. As
observed, M4 using LLaMA2 attains a remarkable 15% accu-
racy enhancement and a 2% improvement in BLEU scores
for T5 emoji prediction and T42 image caption tasks, re-
spectively. This prowess is attributed to LLaMA2’s optimized
architectural schema, expansive training corpus (comprising
2T tokens), and elevated data quality [81]. As M4 is inherently
adaptable to its foundation underpinnings, it seamlessly in-
tegrates and capitalizes upon the latest components.
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Category Tasks Mobile Application Dataset Task-specific Models AccuracyName Size (M)

NLP

Input word prediction T1 Input method (Gboard) PTB RNN 1.4 Acc: 0.17

Question answering T2 T3 Intelligent personal assistant (Siri) SQuAD v2.0 RoBERTa 37 F1: 78.60
TyDi QA AraELECTRA 136 F1: 86.62

Machine translation T4 Translator (Google Translate) wmt22 en-de Transformer 110 BLEU: 0.34
Emoji prediction T5 Input method (Gboard) tweet_eval RoBERTa 125 Acc: 0.33
Emotion prediction T6 Conversational analytics (Clarabridge) go_emotion RoBERTa 125 Acc: 0.47
Sentiment analysis T7 Conversational analytics (Clarabridge) tweet_eval RoBERTa 125 Acc: 0.77

Text classification T8 T9 Spam SMS filtering (Truecaller) ag_news BERT 110 Acc: 0.77
SST2 DistilBERT 67 Acc: 0.51

Grammatical error correction T10 Writing assistance (Grammarly) JFLEG FLAN-t5 801 BLEU: 0.68
Text summary T11 Reading assistant (ChatPDF) CNN Daily Mail BART 400 BLEU:0.43
Code document generation T12 Code editor (Javadoc) CodeSearchNet CodeT5-base 220 BLEU:32.9
Code generation T13 Code editor (Copilot) Shellcode_IA32 CodeBERT 125 BLEU:91.7

CV

Object detection T14 T15 Augmented Reality (Google Lens) COCO Libra-rcnn 42 AP: 0.43
LVIS X-Paste 952 AP: 0.51

Image retrieval T16 Image searcher (Google Photos) Clothes Retrieval Resnet50-arcface 31.7 Recall: 0.90
Super-resolution T17 Video/Image super-resolution (VSCO) REDS Real-ESRGAN 16.7 SSIM: 0.83
Styler transfer T18 Painting & Beatifying (Meitu) COCO, Wikiart StyleFlow 16.8 SSIM: 0.45

Semantic segmentation T19 T20 Smart camera (Segmentix) ADE20K-150 Deeplabv3plus 40 mIoU: 0.43
PASCAL VOC 2012 Deeplabv3plus 40 mIoU: 0.90

Optical character recongnition T21
Intelligent document automation
software (Ocrolus) Rendered SST2 CLIP 438 Acc: 0.71

Image classification T22 T23 Album management (Google Photos) CIFAR100 GFNet 54 Acc: 0.89
ImageNet Resnet-152 93 Acc: 0.91

Traffic sign classification T24 Intelligent transportation (Waze) GTSRB MicronNet 0.43 Acc: 0.98
Vehicle re-identification T25 Surveillance camera (AI Re-ID) Veri776 MSINet 2.3 Rank: 0.96
Gender recognition T26 Smart camera (Face++) Adience MiVOLO-D1 27.4 Acc: 0.96
Location recognition T27 Navigation search (Google Maps) Country211 CLIP 438 Acc: 0.46
Pose estimation T28 AI fitness coach (Keep) AP-10K ViTPose 44 Acc: 0.69
Video classification T29 Video player (YouTube) kinetics400 SlowFast 66 Acc: 0.89
Counting T30 Smart camera (Fitness Tracking) Crowd Counting SASNet 37 MAE: 437
Image matting T31 Virtual backgrounds (Zoom) RefMatte-RW100 MDETR 170 MSE: 0.06

Audio

Automatic speech recognition T32 Private assistant (Siri) LibriSpeech CTC+attention 120 WER: 3.16%

Spoken language understanding T33 T34 Private assistant (Siri) FSC Transformer 39 WER: 0.37%
SLURP CRDNN 26.5 Acc: 0.82

Emotion recognition T35 Emoji recommendation (WeChat) IEMOCAP ECAPA-TDNN 16 Acc: 0.64
Audio classification T36 Music discovery (Shazam) ESC-50 ACDNet 4.74 Acc: 0.87
Keyword spotting T37 Private assistant (Siri) Speech command Cnn-trad-fpool3 0.93 Acc: 0.87

Sensing Human activity recognition T38 T39 T40 AI fitness coach (Keep)
Using Smartphones MLP 0.28 Acc: 0.90
HHAR LIMU-BERT 0.18 Acc: 0.84
MotionSense LIMU-BERT 0.18 Acc: 0.91

Multimodal

Text-to-speech T41 Voice broadcast (WeChat reading) LJSpeech Transformer 54 MCD: 3.26

Audio captioning T42 T43 Hearing-impaired accessibility (Ava) Clotho Transformer 8.91 BLEU: 0.52
AudioSet Transformer 8.91 BLEU: 0.64

Image captioning T44 T45 Visual-impaired accessibility (Supersence) MSCOCO’14 LSTM 188 BLEU: 0.69
Flickr8k LSTM 188 BLEU: 0.58

Text-to-image retrieval T46 T47 Image search (Google Photos) Flickr8k CCLM 500 Recall: 0.39
Flickr30k CCLM 500 Recall: 0.69

Audio/Text-to-image generation T48 Art creation (Verb Art) VGGSound Wav2clip 466 FID: 99.89

Visual question answering T49 T50 Visual-impaired accessibility (Answerables) VQA v2.0 MUTAN 218 Acc: 0.63
VizWiz MUTAN 218 Acc: 0.52

Table 3: A comprehensive benchmark of mobile AI tasks. Circled abbreviations denotes specific task and dataset.

M4 can efficiently preserve the performance with low-
bit quantization. Figure 7 illustrates the performance com-
parison of M4 using quantized backbone with respect to
the TS-model. As observed, M4 using 8-bit (INT8) and 4-bit
(INT4) quantization both achieve nearly lossless accuracy,
compared to M4 using 16-bit float representation (FP16). For
example, on T8 text classification and T13 code generation,
INT8 and INT4-based M4 achieved only a marginal decrease

in accuracy compared to FP16-based M4, with reductions of
0.2%-0.9% and 0.2%-2%, respectively. The reasonable behind
is that large models possess an abundance or even surplus
knowledge representation, which contributes to more exten-
sive knowledge even after quantization [16]. Therefore, we
consistently employed M4with the default INT8 quantization
of the LLaMA backbone.
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4.3 Zero/Few-shot Ability
We experiment on two tasks, image classification and spo-
ken language understanding. For each task, we follow prior
work [5] to randomly select gold labels, with the sample size
varying between 1% and 10% of the entire dataset. By default,
the labels form a skewed distribution across clients to be
more realistic to real-world situations. For each dataset, we
conduct 5 repeated experiments and report the mean results.
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Figure 9: Zero-shot testing of M4 and TS-model.

M4 has better few-shot ability than TS-models that are
trained from scratch. In Figure 8, few-shot M4 performs on
par with or slightly lower than M4 with full data tuning. No-
tably, it consistently outperforms TS-model by up to 67.1%.
For example on T33 , even with a mere 1% sample (equating
to just 231 samples), few-shot M4 achieves a Word Error Rate
(WER) of 0.7%. It is a mere 0.4% higher than M4 with full data,
but 25.4% lower than TS-model that is trained from scratch.
This outcome underscores M4’s prowess in leveraging pre-
trained multimodal knowledge for swift adaptation to new
tasks, even with scarce data.
M4 also has a certain zero-shot ability, but fine-tuning
makes it much more accurate. Figure 9 illustrates M4’s
zero-shot capabilities on 6 tasks. Evidently, M4 demonstrates
commendable zero-shot proficiency, attaining approximately
80% of the TS-model performance in most cases. Notable in-
stances include T8 T21 T42 and T44 , where M4’s zero-shot
performance remains acceptably close to the corresponding
TS-models, with reductions ranging from 7% to 20%. In cer-
tain scenarios, M4 even supersedes the baseline’s zero-shot
performance. A prime example lies in T45 , where M4 show-
cases a 4% improvement over TS-models, a testament to the
efficacy of prompt learning methodologies. Notwithstand-
ing these accomplishments, the application of fine-tuning to
these datasets yields substantial accuracy enhancements for
M4, surging by 11%-39%. This improvement arises from M4’s
robust attention mechanism-based architecture, facilitating
the assimilation of updated knowledge and more effective
knowledge transfer across diverse downstream tasks [89].
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Tasks PEFT settings PEFT results
Techniques Rank Size (Ratio) Acc (Dif)

Emoji prediction LoRA 4 2M (0.03%) 31 (1↓)
Image classification LoRA 4 8M (0.007%) 90 (1↑)

Human activity recognition LoRA 1 5M (0.004%) 96 (5↑)
Audio captioning LoRA 4 4M (0.06%) 72 (19↑)

Table 4: PEFT-enhanced M4’s optimal results. Size (Ra-
tio) denotes the trainable parameter size and its ratio
to total parameters. Acc (Dif) denotes the performance
of PEFT-enhanced M4 along with the differences com-
pared to TS-model, and the units are %.

LoRA Prompt Prefix0

5

10

15

20

Si
ze

 (M
): 

Ba
r 16.80

0.08

5.30

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
): 

Lin
e

(a) PEFT techniques

8 16 32 640

10

20

30

40

Si
ze

 (M
): 

Ba
r

4.20
8.40

16.80

33.60

90

92

94

96

98

100

Ac
cu

ra
cy

 (%
): 

Lin
e

(b) PEFT LoRA rank

Figure 10: Impact analysis of PEFT-enhanced M4 on text
classification. Size (M): trainable parameter size.

4.4 Parameter-efficient Fine-tuning
This subsection examines how PEFT enhances M4’s perfor-
mance. We analyze the impact of three tuning techniques,
along with their key hyper-parameters, on M4’s performance.
A proper PEFT technique and its configuration is cru-
cial to trade off M4 performance and cost. Table 4 reports
the optimal results of M4 on the trade-off between model ac-
curacy and trainable parameter size. Our observations high-
light the efficacy of the LoRA tuning technique, paired with
well-suited rank settings, in yielding optimal results across
a majority of tasks. PEFT-enhanced M4 attains a noteworthy
6% accuracy boost over TS-models, while engaging a mere
0.0253% of parameters for fine-tuning on average. This out-
come is driven by M4’s robust pre-training on an expansive
dataset, necessitating only minimal parameter adjustments
to glean knowledge from task-specific data.

Diving deeper, Figure 10 provides a comprehensive analy-
sis of the impact of diverse PEFT techniques and associated
hyper-parameters on the performance of PEFT-enhanced M4.
In Figure 10(a), the discernible trend showcases LoRA tun-
ing as a standout performer, surpassing Prompt and Prefix
tuning by 19% and 52% in terms of accuracy. Additionally,
the fine-tuning process using LoRA mandates a mere 16.8
million trainable parameters, resulting in an exceptionally
frugal training cost. Figure 10(b) offers further insights, indi-
cating that selecting an appropriate LoRA rank value plays a
pivotal role in propelling M4 towards heightened model accu-
racy while simultaneously minimizing trainable parameter
size. For instance, with the LoRA rank set at 32, M4 attains
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Figure 11: M4’s scalability analysis of storage and peak
memory measured on Jetson ORIN.

a commendable accuracy of 98% on the task, leveraging a
mere 16.8 million trainable parameters.

4.5 Runtime Cost
This subsection evaluates the storage, peak memory, latency,
and energy consumption of running M4 and 50 TS-models
on Jetson ORIN and Pixel 7 Pro.
M4 is more storage-efficient when the model number
scales out. Figure 11(a) presents a comparative analysis
of storage between M4 and TS-models as the task count
increases. As observed, M4’s storage footprint is notably
greater when serving a limited number of tasks compared
to TS-models. However, the narrative changes as task di-
versity proliferates. With the deployment of a modest num-
ber of tasks (e.g. 15 tasks), the storage of M4, specifically
those equipped with INT4 quantization, outpaces that of
TS-models. This trend intensifies as the number of tasks ex-
pands. Ultimately, TS-models surpass the storage allocation
of INT4-based M4, culminating at 15.2GB, signifying a sub-
stantial 2.5-fold escalation. This underscores M4’s compelling
storage scalability.
M4 is memory hungry, but is capable of holding more
tasks for warm in-memory inference when task num-
ber scales out. Figure 11(b) shows that even when serving
50 tasks simultaneously, the cumulative peak memory usage
of INT4-based M4 remains at a modest 7.5GB. This constitutes
a mere 2.7% increase, while concurrently yielding a notable
5.1-fold reduction in peak memory consumption compared
to TS-models. This exceptional memory efficiency can be
attributed to M4’s foundation design, which initially houses
all requisite model parameters. Subsequently, the integration
of new tasks necessitates only a marginal addition of fine-
tuning parameters, typically amounting to less than 10MB
each. The 7.5GB of peak memory cannot fit some mobile
devices, but it is entirely affordable for many high-end smart-
phones with 12/16/32GB of RAM, like the Pixel 7 Pro we
used. Although the 7.5GB peak memory usage may pose con-
straints for devices with limited memory capacity, it remains
entirely viable for many high-end smartphones equipped
with substantial RAM, such as the Pixel 7 Pro utilized in our
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Figure 13: What-if cost analysis of latency and energy
when running M4 on Pixel 7 Pro. TS-model: on CPU.

study. This underscores M4’s practicality and potential to be
effectively deployed across a spectrum of devices.
M4 is 18× slower and incurs 19× more energy than
TS-models on the same processor. Figure 12 provides a
comparison of the inference latency and energy consump-
tion between M4 and TS-models across the spectrum of 50
tasks. As observed, M4 using INT8-format LLaMA exhibits
12× and 19× (on average) higher inference latency and more
energy consumption, compared to TS-models. While the
transition to INT4 quantization offers a marginal ameliora-
tion, the performance gap remains significant—a respective
8× increase in latency and 12× surge in energy consump-
tion compared to TS-models. This substantial performance
degradation is primarily due to M4’s substantial parameter
count and intricate computational demands.
M4 could get on par execution speed as TS-models if it
can be deployed to run on the NPU. Figure 13 provides a
runtime cost comparison between M4 and TS-models on the
CPU and NPU. We obtain the latency and energy of 50 tasks
on CPU, denoted as TS-model and Ours (CPU). As observed,
M4’s inference latency and energy consumption on CPU are
notably 13× and 11× (on average) higher than the TS-models.

Given the substantial performance advantage of NPU over
CPU and GPU as shown in §2.2, we aim to evaluate the opti-
mized runtime cost when deploying M4 on the NPU. However,
the NPU currently supports a limited set of operators (de-
tails in §2.2) and cannot directly execute all components of
M4. Therefore, we conduct a what-if analysis to estimate its
runtime latency and energy consumption on NPU, denoted

Tasks Path Latency (s)
CPU NPU*

Image classification Path-3 IMG_enc: 2.10 0.11
Audio classification Path-3 AUD-I_enc: 0.28 0.014

Question answering Path-2 First token: 6.34 0.32
Sequent tokens: 0.24/token 0.012/token

Visual
question answering Path-1 First token: 6.47 0.32

Sequent tokens: 0.25/token 0.013/token
Text-to-speech Path-4 TTS_dec: 0.82 0.041

Table 5: An in-depth what-if cost analysis of latency
when running M4 on Pixel 7 Pro. NPU*: M4’s estimated
latency based on the NPU acceleration rate of TS-model
if it can be deployed on NPU.
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Figure 14: Simplicity analysis of M4’s operators.

as Ours (𝑁𝑃𝑈 ∗), based on the measured performance of TS-
models in §2.2. As observed, NPU-enabled M4 achieves an av-
erage latency of 0.48s and energy consumption of 1.3J, which
are even 11.1% and 55.2% lower than TS-models on CPU. Fur-
thermore, we delve into the architectural intricacies of M4
to analyze the latency breakdown performance in Table 5.
From this table, we observe that the latency optimization bot-
tleneck for M4 lies in the time taken by the IMG-encoder and
the generation of the first token by the backbone, which is
approximately 2.1s and 6.3s, respectively. These components
collectively account for 31% and 93% of M4’s average latency
(6.8s in Figure 12(a)). However, the other components could
exhibit near real-time inference (less than 100ms) if being
deployed on NPU. These achievements demonstrate that, if
M4 can be accelerated on NPU, it could get on par execution
speed and energy consumption with TS-models.

4.6 Model Architecture Simplicity
We convert all models into ONNX format, which enabled us
to facilitate an analysis of their usage during execution.
M4’s architectural design is much simpler and cleaner
in terms of NN operators, therefore could greatly sim-
plify accelerator design. Figure 14(a) shows that the num-
ber of operators in the TS-models increases rapidly with the
growth in the number of tasks. Notably, as the task spectrum
broadens to encompass 50 tasks, the number of operator
types culminates at 156. In contrast, M4 engages a mere 39
operator types, encompassing both foundation model and
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Red Panda
Red pandas are adorable, medium-sized mammals 

native to the Himalayas and southeast Asia. They are 

also known as lesser pandas or red-and-white pandas. 

What is its relationship with the giant panda?

They are both members of the bear family (Ursidae), but they are 

different species. The giant panda (Ailuropoda melanoleuca) is 

much larger than the red panda (Ailurus fulgens), and is found 

only in a few isolated mountain ranges in China.

M4

4″

They are omnivores, feeding on bamboo, fruits, leaves, and small 
animals like rodents and insects.

Voice to text

What does this animal eat?

M4

M4

Figure 15: A demo of M4: multimodal chat.

task-specific "adapters". Furthermore, Figure 14(b) under-
takes a granular exploration of operator usage frequency.
It underscores that a mere 11 operator types within M4 ex-
hibit usage frequencies exceeding 78%, whereas the majority
of operators manifest markedly lower usage frequencies.
This phenomenon emanates from M4’s transformer-based ar-
chitecture, which inherently involves fewer operators, thus
enhancing operational efficiency [63].

4.7 Novel Application with M4
M4 enables complex, unpresent mobile applications.
Based on our proposed M4, we build a demo of a multimodal
chat use case as shown in Figure 15. Users engage in multi-
turn chats with the M4 client using multimodal inputs such
as images, text, and audio, thereby obtaining precise and
tailored answers that meet their requirements. We build this
prototype system of M4 based on the architecture depicted
in Figure 3. It first aligns the contents of image, text, and
audio by converting multimodal input data into a unified
representation. Then, it encapsulates abundant knowledge
to understand complex embedded data, perform task-specific
inference, and generate the required information. This innate
capability for multimodal processing harbors the potential
to significantly enrich the landscape of mobile applications.
By way of example, it stands to enhance accessibility for
individuals with visual or hearing impairments.

5 RELATEDWORK
Foundation models. Building one-for-all foundation mod-
els to serve generic AI tasks has been a primary research
goal of themachine learning community. The recent advance-
ments of LLMs [4, 17, 32, 55, 58, 60, 67, 69, 78, 80–82, 100],
multimodalities alignment [20, 28, 41–43, 57, 65, 74, 77], and
parameter-efficient training methods [27, 40, 44, 47, 50, 51,

54, 89, 99, 101] have shed lights on this challenging goal. For
instance, ImageBind [20] and CoDi [77] focus on how to
align the embeddings of each modality, and PandaGPT [74]
further attempts to compose semantics from different modal-
ities naturally based on LLaMA [81]. However, there have
been no efforts like M4 that try to fit extremely diversified
AI tasks into one model. Meanwhile, M4 leverages the most
state-of-the-art pre-trained LLMs to reuse the wisdoms as
well as the investments from the ML community&industry.
Hardware-system-algorithm co-design for mobile AI.
AI workloads are highly compute-intensive and exhibit anal-
ogous patterns, therefore is better to be accelerated domain-
specific accelerator (e.g., NPUs). For instance, SpAtten [86]
and Sanger [53] focus on how efficient algorithm-architecture
co-designs can reduce sparse attention computation and
memory access. Besides, QNAS [45] and NAAS [46] focus on
composing highly matched neural-hardware architectures
by jointly searching for neural network architecture, acceler-
ator architecture, and compiler mapping. However, all prior
literature makes tradeoffs between the ubiquity of operator
support and the performance, instead of for a foundation
model that can serve generic AI tasks itself. The vision of the
mobile foundation model could open a new research domain
for cross-layer co-design of mobile AI.
Managing AI as a mobile system service. AI has been
a ubiquitous workload on mobile devices, and managing it
at a system aspect (instead of individual app) could facili-
tate OS-wise runtime scheduling and software deployment.
Some early studies [14, 31, 87, 94, 102] attempt tomitigate the
severe fragment across different libs in the mobile DL ecosys-
tem. Google also introduced a unified ML interface NNAPI
[22] into Android framework in 2017, to relieve the gap be-
tween heterogeneous mobile processors and user-defined
ML frameworks. Compared to the above work, M4 takes an-
other giant step further that mobile devices shall manage a
foundation model for eachML task and expose it as firmware.

6 CONCLUSIONS AND FUTUREWORK
We envision a mobile hardware-OS co-managed multimodal
foundation model that is exposed to mobile applications as a
system service to serve almost every on-device AI task. We
design and prototype the first such model using off-the-shelf
LLMs. Evaluated on a comprehensive benchmark consisting
of 50 representative mobile AI tasks, M4 shows good accuracy
on par with models tailored for each task. M4 also shows po-
tential in better scalability and reduced runtime cost through
its shared weights and operator simplicity.

To be noted, M4 is the very first step towards the vision of
mobile foundation model. We believe it could potentially rev-
olutionize the mobile AI landscape and open a new research
domain. However, to fully realize the vision, there are a few
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key designs to be explored. For instance: (1) Foundationmodel
design: As a preliminary prototype, M4 is currently built atop
off-the-shelf, separately pre-trained LLMs from Internet in-
stead of being tailored for mobile devices. Therefore, it is
still highly inefficient in terms of accuracy and model param-
eter size. With enough resources (GPUs and data), hardware
vendors can build a more compact mobile foundation model
that is expected to deliver significantly higher accuracy with
lower runtime cost than M4. (2)Accelerator design: fine-tuning
for downstream tasks generates small “adapters” that are
inserted into the mobile foundation model. The NPU better
has the flexibility to run those adapters as well; otherwise
the inference must involve CPU/GPU computation and data
movement overhead. Fortunately, the adapters have sim-
ple structure (e.g., linear matrix operations) and very few
weights. (3) FM upgradating: the foundation model capacity
could evolve with better architecture/weights as shown in
§4.2. Yet the adapters trained for the old foundation model
cannot work with the new one. We therefore need a unified
interface between LLMs and adapters to allow them to evolve
independently without interfering with each other.
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